German Scientists Morph from 3D Printing to Dynamic 4D Microfluidic Structures Controlled by Laser

Share this Article

Researchers at the Karlsruhe Institute of Technology (KIT) are hoping to make greater strides in biomedical applications through fabrication of microstructures that can adapt like more natural substances, morphing into a ‘switchable’ form. The scientists at KIT have been focused on laser 3D printing in their studies, often a favored mode due to higher levels of performance, strength, and accuracy—along with greater potential for controlling a variety of materials.

In ‘Movable microstructures from the printer: Microstructures can be moved by light and temperature,’ published recently in Nature Communications, the scientists discuss how they are using lasers to control pre-programmed objects with temperature and light to make more dynamic—and useful—systems, particularly for medicine. Using direct laser writing, the KIT team can now easily create smaller 3D printed structures:

“However, for many applications, particularly in biology and biomedicine, it would be desirable not only to produce rigid structures but also active systems that are still movable after the printing process, e.g., that can change their shapes by an external signal,” says Professor Martin Bastmeyer from KIT’s Zoological Institute, along with the KIT Institute of Functional Interfaces.

Marc Hippler (Photo credit: KIT)

This innovative KIT study was an interdisciplinary project in the ‘3D Matter Made to Order’ excellence cluster, in coordination with Karlsruhe Institute of Technology and Heidelberg University. Also participating were PhD students attending Karlsruhe School of Optics & Photonics (KSOP) of KIT. The end result has been the creation of structures that move in response to stimulation—mainly via temperature. What makes them unique also is that they are viable in ‘aqueous environments’ and will be helpful in biomedicine.

Grayscale lithography is behind much of the success in this project, allowing for precise settings for movement with focused light serving as a controlling signal.

“We have developed the method to such an extent that we can also manufacture complex structures in which, as a result of external stimulation, the moving parts do not all react in the same way, but show different but precisely defined reactions,” says Marc Hippler, first author in the study.

The right material does the trick: The objects from the 3D printer are still movable even after printing and can be stimulated, for example, by a change in temperature.
(Photo Credit: Marc Hippler, C)

Innovation today often draws from sources—sometimes unlikely—like nature, for example, whether we are inspired by something as simple as blades of grass for creating lightweight materials or fish in helping us to move forward in building underwater robots. Making a connection between natural life and creating physical items or hardware that is ultimately, artificial, is the product of creative, open minds whether on the part of a scientist, artist, engineer, or other innovator. Rigidity in thinking or in structures can leave far too many opportunities closed, which is why so many scientists today are taking the 3D realm one step further in 4D, allowing for greater transformation and customization in artificial, printed objects.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source: Science Daily]

Share this Article


Recent News

Cartilage Tissue Engineering via Characterization and Application of Carboxymethyl Chitosan-Based Bioink

University of Sheffield: Comparative Research of SLM & EBM Additive Manufacturing with Tungsten



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Barcelona: Electrostatic Jet Deflection for Ultrafast 3D Printing

Barcelona researchers Ievgenii Liashenko, Joan Rosell-Llompart, and Andreu Cabot have come together to author the recently published, ‘Ultrafast 3D printing with submicrometer features using electrostatic jet deflection.’ Following the continued...

Cornet: Research Network in Lower Austria Explores Expanding 3D Printing Applications

Ecoplus Plastics and Mechatronics Cluster in Lower Austria has just completed their ‘AM 4 Industry’ Cornet project, outlining their findings regarding 3D printing—with the recently published work serving as the...

Additive Manufacturing: Still a Real Need for Design Guidelines in Electron Beam Melting

Researchers from King Saud University in Saudi Arabia explore the potential—and the challenges—for industrial users engaged in metal 3D printing via EBM processes. Their findings are outlined in the recently...

Metal 3D Printing Research: Using the Discrete Element Method to Study Powder Spreading

In the recently published ‘A DEM study of powder spreading in additive layer manufacturing,’ authors Yahia M. Fouda and Andrew E. Bayly performed discrete element method simulations to study additive manufacturing applications using titanium alloy (Ti6AlV4)...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!