Exone end to end binder jetting service

German Scientists Morph from 3D Printing to Dynamic 4D Microfluidic Structures Controlled by Laser

Metal Parts Produced
Commercial Space
Medical Devices

Share this Article

Researchers at the Karlsruhe Institute of Technology (KIT) are hoping to make greater strides in biomedical applications through fabrication of microstructures that can adapt like more natural substances, morphing into a ‘switchable’ form. The scientists at KIT have been focused on laser 3D printing in their studies, often a favored mode due to higher levels of performance, strength, and accuracy—along with greater potential for controlling a variety of materials.

In ‘Movable microstructures from the printer: Microstructures can be moved by light and temperature,’ published recently in Nature Communications, the scientists discuss how they are using lasers to control pre-programmed objects with temperature and light to make more dynamic—and useful—systems, particularly for medicine. Using direct laser writing, the KIT team can now easily create smaller 3D printed structures:

“However, for many applications, particularly in biology and biomedicine, it would be desirable not only to produce rigid structures but also active systems that are still movable after the printing process, e.g., that can change their shapes by an external signal,” says Professor Martin Bastmeyer from KIT’s Zoological Institute, along with the KIT Institute of Functional Interfaces.

Marc Hippler (Photo credit: KIT)

This innovative KIT study was an interdisciplinary project in the ‘3D Matter Made to Order’ excellence cluster, in coordination with Karlsruhe Institute of Technology and Heidelberg University. Also participating were PhD students attending Karlsruhe School of Optics & Photonics (KSOP) of KIT. The end result has been the creation of structures that move in response to stimulation—mainly via temperature. What makes them unique also is that they are viable in ‘aqueous environments’ and will be helpful in biomedicine.

Grayscale lithography is behind much of the success in this project, allowing for precise settings for movement with focused light serving as a controlling signal.

“We have developed the method to such an extent that we can also manufacture complex structures in which, as a result of external stimulation, the moving parts do not all react in the same way, but show different but precisely defined reactions,” says Marc Hippler, first author in the study.

The right material does the trick: The objects from the 3D printer are still movable even after printing and can be stimulated, for example, by a change in temperature.
(Photo Credit: Marc Hippler, C)

Innovation today often draws from sources—sometimes unlikely—like nature, for example, whether we are inspired by something as simple as blades of grass for creating lightweight materials or fish in helping us to move forward in building underwater robots. Making a connection between natural life and creating physical items or hardware that is ultimately, artificial, is the product of creative, open minds whether on the part of a scientist, artist, engineer, or other innovator. Rigidity in thinking or in structures can leave far too many opportunities closed, which is why so many scientists today are taking the 3D realm one step further in 4D, allowing for greater transformation and customization in artificial, printed objects.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source: Science Daily]

Share this Article


Recent News

Expansion Strategy: 3D Printing Digital Imaging Company In-Vision is Now a Stock Corporation

FX20 Printer & Continuous Fiber Reinforced ULTEM 9085 Increase 3D Printing in Demanding Industries



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: October 24, 2021

It’s another busy week of events and roundups, covering topics from dispensing and medical applications to AM risk assessment, software, and much more. Read on for all the details! ViscoTec’s...

2021 Formnext Start-Up Challenge & AM Ventures Impact Award Winners Announced

While the physical event was canceled last year due to the COVID-19 pandemic, Formnext is back live and in-person this year, November16-19, albeit with some very specific rules for attendance....

Hexagon & Stratasys Announce Partnership to Integrate Digimat Software with ULTEM 9805

One of the world’s most prominent intelligent manufacturing software firms, Hexagon Manufacturing Intelligence, has announced a new partnership with Stratasys, an industry leader in producing 3D printers and solutions for...

RAPID + TCT 2021 Day 2: 3D Printing with Inkbit, Farsoon, AON3D, & Raise3D

At the recent RAPID + TCT 2021 in Chicago, I had the opportunity to attend keynote presentations, interview several industry companies, watch an awards ceremony, and walk the show floor....


Shop

View our broad assortment of in house and third party products.