Penn State Researchers 3D Print Porous Tissues

Share this Article

3D bioprinting still has a lot of issues that need to be worked out before we can see anything like a 3D printed organ transplant. One issue is figuring out how to grow blood vessels in printed or engineered tissue, but researchers at Penn State have found an alternative to that idea, creating tissues with micropores that allow nutrient and oxygen diffusion into the core.

Ibrahim T. Ozbolat

“One of the problems with fabrication of tissues is that we can’t make them large in size,” said Ibrahim T. Ozbolat, Associate Professor of Engineering Science and Mechanics. “Cells die if nutrients and oxygen can’t get inside.”

Creating tissue building blocks with micropores is an alternative to vascularization, or growing blood vessels inside the tissue, according to the researchers. They refer to the building blocks as “porous tissue strands.” They began with stem cells derived from human fat and mixed them with sodium alginate porogens. Sodium alginate, which is derived from seaweed, can be printed into tiny particles that leave holes, or pores, behind in the fabric of the tissue when dissolved. The researchers used the stem cells and sodium alginate to 3D print strands of undifferentiated tissue, which were then combined, by 3D printing them next to and on top of each other, to form patches of tissue.

The researchers then exposed the tissue to the chemical cocktail that causes stem cells to differentiate, allowing the cells to turn into bone or cartilage. The pores allow the fluid to flow to all of the stem cells. According to the researchers, the strands were able to maintain 25 percent porosity and 85 percent pore connectivity for at least three weeks.

“These patches can be implanted in bone or cartilage, depending on which cells they are,” said Ozbolat. “They can be used for osteoarthritis, patches for plastic surgery such as the cartilage in the nasal septum, knee restoration and other bone or cartilage defects.”

Cartilage tends to be easier to produce than bone because in the human body, cartilage does not have blood vessels running through it. Some bone is naturally porous, however, so porosity in engineered tissue means greater potential for repairing or replacing natural bone. Only tiny patches of tissue can currently be made, but they are still easier to fabricate than growing artificial tissue on scaffolding.

The research was documented in a paper entitled “Porous tissue strands: avascular building blocks for scalable tissue fabrication.” The work has a lot of potential for bone and cartilage regeneration, and the researchers are also considering applying their technique to muscle, fat and other tissues as well.

Authors of the paper include Yang Wu, Monika Hospodiuk, Weijie Peng, Hemanth Gudapati, Thomas Neuberger, Srinivas Koduru, Dino J. Ravnic and Ibrahim T. Ozbolat.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Share this Article


Recent News

3D Systems and CollPlant: One Step Closer to Bioprinting Tissues for Breast Cancer Patients

3D Printed BioPods Could Grow Plants Anywhere, on Earth and in Space



Categories

3D Design

3D Printed Art

3D Printed Guns

3D Printer Reviews


You May Also Like

Microlight3D Awarded Funds to Enable Radiative Cooling Concrete with 3D Printing

As industrial society attempts to transition to more sustainable means of operating, there are countless endeavors underway to modify our existing ways of living to have a less negative impact...

Eurovision Trophy 3D Printed from Recycled Plastic Showcases Sustainability

Organized by the European Broadcasting Union (EBU), the Eurovision Song Contest sees performers and artists compete each year from countries that are EBU members, including the Netherlands, France, Israel, Germany, Australia,...

Featured

In-Space 3D Printing Builds Part for ISS Water Recovery System

Ever since Redwire’s first commercial microgravity plastic 3D printer was launched to the International Space Station (ISS) in 2016, it has provided in-orbit fabrication services and produced more than 200...

Tronix3D Acquired by Agile Space Industries to Ramp up Aerospace 3D Printing

Agile Space Industries (Agile), a developer of propulsion engines for spacecraft, acquired the 3D printing service bureau Tronix3D for an undisclosed amount and rebranded it as Agile Additive. The wholly-owned...


Shop

View our broad assortment of in house and third party products.