Researchers Use CFD Simulation to Determine Ideal Rate of Extrusion and Toolpath in FDM

Share this Article

In a paper entitled “Numerical Modeling of the Material Deposition and Contouring Precision in Fused Deposition Modeling,” a group of researchers discusses how they used computation fluid dynamics (CFD) to simulate the flow of the material extruded from the nozzle of a 3D printer. The molten thermoplastic was modeled as an incompressible Newtonian fluid with a free surface, and the numerical model provided a prediction of the shape of the printed road. The CFD simulation provided a way to optimize tool path planning and deposition strategy, in order to improve dimensional accuracy in extrusion-based 3D printing.

The researchers investigated four deposition strategies for 3D printing a road with a 90-degree turn onto the build platform. Two types of tool paths were considered for 3D printing the 90-degree turn: a sharp tool path, which reproduces the exact trajectory of the two segments, requiring a stop of the printing head at the turn point; and a smoothed tool path, which negotiates the turn with blended acceleration along the X and Y axis. Two extrusion rates were also considered: a constant extrusion rate and a synchronized extrusion rate, in which the volumetric flux is kept proportional to the tangential velocity of the printing head.

“In theory, the synchronized extrusion rate should produce a uniform road width along the turn; however, the synchronized extrusion rate is an ideal case that could only be achieved if the dynamics of the liquefier and the filament feeding system were totally predictable and under full control of the 3D printer, which is not the case in practice,” the researchers explain. “On the other-hand, the constant extrusion rate is expected to lead to variable road widths, when the printing head decelerates or stops at the turn.”

The researchers used a CFD model to simulate the different rates of material flow. They found that the ideal case was where the extrusion rate was synchronized with the tangential velocity of the printing head and the tool path followed a stop-at-turn trajectory. This produced a uniform road width with minimal overfill and underfill at the turn. However, if the extrusion rate was kept constant during the acceleration and deceleration phases, the stop-at-turn trajectory yielded a large overfill at the turn. An almost uniform road width could be obtained with a constant extrusion rate, by using blended acceleration, at the expense of smoothing the corner.

Geometry of the CFD model. The light turquoise and the dark grey surfaces represent the build platform and the extrusion nozzle, respectively.

“The smoothed tool path with an acceleration blending factor κ=0.6 provides a compromise between material overfill and corner smoothing,” the researchers conclude. “In principle, the predicted variations of the road width at the corner could be taken into account by the tool path planner, in order to compensate overfill and underfill regions. Thus, CFD simulations could be used to develop optimized tool paths and deposition strategies, which would improve dimensional accuracy and surface quality in extrusion-based additive manufacturing.”

Authors of the paper include Raphaël Benjamin Comminal, Marcin Piotr Serdeczny, David Bue Pedersen and Jon Spangenberg.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Share this Article


Recent News

Chinese Researchers Design 3D Printed Biomimetic Soft Robotics & Grippers

Equispheres Receives $8 Million from SDTC to Scale Metal 3D Printing Powder Production



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

In-Q-Tel and 3D Printing, Part 1: What’s In-Q-Tel?

So far, a venture capital company called In-Q-Tel has invested in three startups within the 3D printing and scanning space: Voxel8, Arevo, and Fuel3D. If you don’t recognize the name...

3D Printing News Briefs: January 11, 2020

We’ve got some business news to share with you in today’s 3D Printing News Briefs. For starters, Knust-Godwin has purchased a Sapphire 3D printer from VELO3D. The AMable project has...

Canada: University Researchers 3D Print GlioMesh to Treat Brain Cancer

In the recently published ‘A Drug-Eluting 3D-Printed Mesh (GlioMesh) for Management of Glioblastoma,’ Canadian researchers take on the topic of using 3D printing for better treatment of glioblastoma (GBM) as...

Sintratec Providing 3D Printing Support to Daimler Buses for Service Bases

The commercial vehicles segment of Mercedes-Benz parent company Daimler AG has fully integrated 3D printing into the development process and series production workflow for several of its divisions, such as...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!