3D Printed Graphene Aerogel May Lead to Powerful Supercapacitors

Share this Article

Supercapacitors are energy storage devices that charge very rapidly and can retain their storage capacity through tens of thousands of charge cycles. Their applications include regenerative braking systems in electric vehicles. They hold less energy in the same amount of space as batteries, and they don’t hold a charge for quite as long – but advances in supercapacitor technology could make them competitive with batteries in a wider range of applications. In a study entitled “Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading,” a group of researchers at UC Santa Cruz and Lawrence Livermore National Laboratory have achieved unprecedented performance from a supercapacitor electrode. The electrode was fabricated from a 3D printable graphene aerogel, which was used to build a porous 3D scaffold loaded with pseudocapacative material.

In tests, the electrodes achieved the highest areal capacitance ever reported for a supercapacitor. In an earlier study, the researchers achieved extremely fast supercapacitor electrodes 3D printed from graphene aerogel. This time, they used an improved graphene aerogel to build a porous scaffold which was loaded with manganese oxide.

A pseudocapacitor is a type of supercapacitor that stores energy through a reaction at the electrode surface, giving it more battery-like performance than supercapacitors that store energy primarily through an electrostatic mechanism (called electric double-layer capacitance, or EDLC).

“The problem for pseudocapacitors is that when you increase the thickness of the electrode, the capacitance decreases rapidly because of sluggish ion diffusion in bulk structure,” said UC Santa Cruz Professor of Chemistry and Biochemistry Yat Li. “So the challenge is to increase the mass loading of pseudocapacitor material without sacrificing its energy storage capacity per unit mass or volume.”

The study demonstrates a breakthrough in balancing mass loading and capacitance in a pseudocapacitor. The researchers increased mass loading to record levels of more than 100 milligrams of manganese oxide per square centimeter without compromising performance, a major increase compared to commercial devices, which have levels of about 10 milligrams per square centimeter.

The areal capacitance also increased linearly with mass loading of manganese oxide and electrode thickness, while the capacitance per gram (gravimetric capacitance) remained almost unchanged. This indicates that the electrode’s performance is not limited by ion diffusion even at such a high mass loading.

In the traditional fabrication of supercapacitors, according to graduate student Bin Lao, a thin coating of electrode material is applied to a thin metal sheet that serves as a current collector. Increasing the thickness of the coating causes performance to decline, so multiple sheets are stacked to build capacitance, increasing weight and material cost.

“With our approach, we don’t need stacking because we can increase capacitance by making the electrode thicker without sacrificing performance,” Yao said.

The researchers managed to increase the thickness of the electrodes to four millimeters without sacrificing performance. The electrodes were designed with a periodic pore structure that allows for both uniform deposition of the material and efficient ion distribution for charging and discharging. The printed structure itself is a lattice made from cylindrical porous rods of the graphene aerogel. Manganese oxide is then deposited onto the lattice.

“The key innovation in this study is the use of 3D printing to fabricate a rationally designed structure providing a carbon scaffold to support the pseudocapacitive material,” Li said. “These findings validate a new approach to fabricating energy storage devices using 3D printing.”

Supercapacitor devices made with the electrodes showed good cycling stability, retaining more than 90 percent of initial capacitance after 20,000 cycles of charging and discharging. The 3D printed electrodes allow for a large amount of design flexibility, and the graphene-based inks offer ultrahigh surface area, lightweight properties, elasticity, and superior electrical conductivity.

Authors of the paper include Bin Yao, Swetha Chandrasekaran, Jing Zhang, Wang Xiao, Fang Qian, Cheng Zhu, Eric B. Duoss, Christopher M. Spadaccini, Marcus A. Worsley and Yat Li.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Facebook Comments

Share this Article


Related Articles

LLNL and UC Berkeley Researchers Continue Work on Their Promising Volumetric 3D Printing Method

3D Printed Electrodes Make Microfluidic Devices Cheaper and Quicker to Fabricate



Categories

3D Design

3D Printed Architecture

3D Printed Art

3D printed chicken


You May Also Like

LLNL: Magnetically Responsive Metamaterials Instantly Stiffen 3D Printed Structures

Lawrence Livermore National Laboratory (LLNL) frequently does impressive work with 3D printing materials, including metamaterials. Now the lab has introduced a new class of metamaterial that can almost instantly respond and...

Researchers Test Two Configurations of Biowaste 3D Printed Microbial Fuel Cells

Researchers and scientists are constantly working to develop solutions that can save our future world, from solving problems like increasing pollution and climate change to producing clean energy. A group...

LLNL Researchers Use Laser Beam Shaping to Enhance Properties During Metal 3D Printing

From bioprinting blood vessels and using 3D printing to control reactive materials to 3D printing nanoporous gold and researching metal 3D printing flaws, the scientists at Lawrence Livermore National Laboratory...

Lawrence Livermore National Laboratory Makes 3D Printed Nanoporous Gold That Could Change the Design of Electrochemical Reactors

Lawrence Livermore National Laboratory (LLNL) is known for doing impressive work with materials, particularly related to 3D printing. Whether it’s nanoscale 3D printing or 3D printed glass, the organization is constantly...


Training


Shop

View our broad assortment of in house and third party products.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!