Additive Manufacturing Strategies

How Accurate is 3D Printing for Reconstructing Forensic Evidence?

ST Medical Devices

Share this Article

More than one crime, including multiple murders, has been solved with help from 3D printing, as the technology can help recreate forensic evidence. But in a new study entitled “A Preliminary Investigation into the Accuracy of 3D Modeling and 3D Printing in Forensic Anthropology Evidence Reconstruction,” a team of researchers examines just how impactful 3D printing and 3D modeling actually are in solving cases.

The researchers affirm that 3D printed evidence has been useful in several court scenarios. 3D printed replicas of bones can be more effective than photographs at showing the nature of injuries to victims, but while there is quite a bit of circumstantial evidence demonstrating that this is the case, there is still a lack of published empirical evidence. This study aims to change that.

“Digital methods have become increasingly popular and have been used in place of traditional photographs for demonstrating evidence in court for a number of years,” the researchers point out. “It can be argued that both photographs and 3D virtual models may not always provide accurate representations of their original subject. First, subjects can be distorted via the light or angle used in a photograph or a virtual rendering; second, when presenting a 3D object such as a bone as a 2D image, whether as a photograph or a virtual model, depth and spatial information is immediately lost; and third, virtual 3D models are stereoscopic, meaning that they only give the illusion of depth. A novel way to address these problems has been the introduction of 3D printed replicas: a physical 3D object that has depth, haptic, and spatial characteristics.”

For the study, the researchers borrowed archaeological human bone specimens from University College London: a cranium, a clavicle and a first metatarsal. The bones were scanned and then 3D printed using six different commercial 3D printers: an Ultimaker 2, an RS Pro, an EOS P1, an Objet500 Connex 3, a Form 2 and a Makerbot 2. Osteometric measurements were taken of the bones and the 3D printed replicas by five doctoral students in archaeology and forensic anthropology.

“The results from this study found good intraobserver reliability and indicate good accuracy,” the researchers state. “The data resulted in mean differences ranging from −0.4 to 1.2 mm (−0.4% to 12.0%) for the virtual model data, and from −0.2 to 1.2 mm (−0.2% to 9.9%) for 3D print data.”

Overall, the virtual models and 3D printed replicas were highly accurate to the source specimens. The cranium model showed the most inaccuracy, likely because of its complexity and large curved surface. Three major conclusions were reached from the study:

  • It is possible to produce accurate 3D printed replicas from CT scanned skeletal elements
  • Each printer tested produced replicas with mean differences within ±1.2 mm
  • SLS was the most metrically accurate printer type used, and produced prints that were the most aesthetically true to the original specimen

Recommendations include employing the highest CT scan resolution possible, using a high/hard CT reconstruction filter, applying an appropriate degree of surface smoothing, and using a 3D printer that does not require support structures. The researchers conclude that 3D printed forensic samples are indeed a valid method of providing evidence in court.

“Further work will explore 3D printer capabilities for printing forensic case specimens exhibiting trauma and fine details, and crucially an experimental investigation into the evidential impact of using 3D techniques for demonstration of evidence,” the researchers state. “The issues surrounding the validity and reliability of printed replicas and their evidential value must be addressed urgently, to avoid a lack of transparency in evaluative interpretation and the risk of misleading evidence creating unsafe rulings.”

Authors of the paper include Rachael M. Carew, Ruth M. Morgan and Carolyn Rando.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Share this Article


Recent News

Kornit Digital Buys Tesoma, Expanding Digital Textile Production

Customized Vehicles, On-Site Medical 3D Printing, and Green Lasers—All at TIPE 2022



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing People: A Dialogue Beyond Industry at TIPE 2022

Women in 3D Printing (Wi3DP) has pulled off another virtual event show coup. After an immensely successful inaugural event in 2021, the non-profit has hosted an even bigger 2022 event. And...

3D Printing Webinar and Event Roundup: January 16, 2022

We’re back in business this week with plenty of webinars and events, both virtual and in-person, starting with the second edition of the all-female-speaker TIPE 3D Printing conference. There are...

Women in 3D Printing’s Posts Agenda for TIPE Conference and Virtual Career Fair

This January 18-20, Women in 3D Printing (Wi3DP) is back for the second time in a row with its TIPE 3D Printing Conference and Virtual Career Fair. Like its inaugural...

Ford and Czinger to Give Automotive 3D Printing Keynotes at AMUG 2022

As the 2022 AMUG Conference approaches, the Additive Manufacturing Users Group (AMUG) has announced its keynote speakers. Headlining the event, set to take place in Chicago, Illinois from April 3-7, are Kevin...


Shop

View our broad assortment of in house and third party products.