Additive Manufacturing Strategies

Do Higher Print Temperatures Lead to Better FDM PLA 3D Printed Parts?

ST Medical Devices

Share this Article

CT-reconstructed geometry of ROIs for specimens fabricated at a 180 ◦C, b 220 ◦C, and c 260 ◦C

Many factors impact the quality of 3D printed parts, and as the technology is used more and more for production of final parts rather than just prototyping, it is necessary to investigate those factors more thoroughly so that these final parts can be produced with optimal properties. In a paper entitled “Investigating the effect of fabrication temperature on mechanical properties of fused deposition modeling parts using X-ray computed tomography,” a group of researchers study the effect of printing temperature on the final quality of 3D printed parts.

Cross-sectional areas of specimens fabricated at 180 ◦C, 220 ◦C, and 260 ◦C at a–c XY plane and d–f XZ plane

Defects in 3D printed parts are not always visible, but internal defects can have even more of a negative effect than visible ones. In this study, the researchers used CT scanning to non-destructively study 3D printed parts and check their quality. An Ultimaker 2 3D printer was used to print several sample parts from black PLA. Nine sets of three samples each were printed, and the parameters for each part were identical except for the print temperature, which differed in degrees of 10 over a range from 180º to 260ºC.

The 3D printed samples were subjected to tensile tests, and then a CT system was used to test one out of each three-sample set. A 20-mm-long section from the middle of each sample was scanned, and the CT data was used to analyze the porosity of each sample. The researchers found that the weight of the samples was influenced by the temperature at which they had been printed – the higher the temperature, the heavier the part. Part quality also became higher at higher temperatures.

“An in-depth investigation was carried out on the internal geometry of the specimens at the ROI obtained from CT data,” the researchers state. “The lack of deposition resulting in bigger air gap was observed for the specimens fabricated at lower temperatures which confirms the results obtained from the weight measurement.”

The longitudinal filaments showed a lack of bonding at lower temperatures, as did the transverse filaments, although the transverse filaments had less of an effect on the strength of each part than the longitudinal ones. The porosity of each part decreased as temperature went up, as well.

“All the specimens were subjected to a uniaxial tensile load,” the researchers continue. “The results showed that the mechanical properties of PLA specimens are dependent on fabrication temperature. The specimens fabricated at lower temperatures had a higher percentage of elongation and lower yield stress. On the contrary, those fabricated at higher temperatures showed higher yield stress and lower strain at break.”

Porosity in ROI for the specimen fabricated at 190 ◦C and the three aligned measuring boxes

Overall, it was discovered that parts 3D printed at lower temperatures had greater air gaps in them, which decreased their strength, meaning that for strong parts, higher printing temperatures are ideal.

“Using CT, it was shown that the local density varies throughout the parts regardless of fabrication temperature,” the researchers add. “This means that FDM parts, even those printed at recommended temperature range with 100 % infill, do not achieve homogenous internal structure. Since the porosity is not distributed homogenously throughout the FDM parts, it is not the only parameter for assessing the strength of FDM parts; however, internal geometry features such as minimum cross-sectional area obtained from CT give better information for evaluating the expected strength of FDM parts.”

Authors of the paper include Amir Reza Zekavat, Anton Jansson, Joakim Larsson and Lars Pejryd.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

FDM 3D Printing Support Removal Times Cut in Half with VORSA 500

3D Printing Drone Swarms, Part 12: 3D Printing Missiles



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

ICAM 2021: Keynotes on 3D Printing in Healthcare & Aerospace

At last month’s International Conference on Additive Manufacturing (ICAM) 2021 in Anaheim, California, hosted by ASTM International’s Additive Manufacturing Center of Excellence (AMCOE), a wide variety of topics were covered,...

Featured

3D Printing Unicorns: Gelato Gets $240M in Funding, Expands into 3D Printing

On-demand printing platform Gelato, based in Oslo, Norway, achieved the coveted unicorn status after a new funding round. On August 16, 2021, the company announced it had raised $240 million...

Featured

US Army and Raytheon to Use 3D Systems Metal 3D Printing to Heat-Optimize Munitions

3D Systems (NYSE: DDD) has been chosen by defense contractor Raytheon and the U.S. Army’s central laboratory to help with a design optimization project. To do that, the 3D Systems’...

Raytheon Receives Funding for Aerospace 3D Printing of Optical Components

This spring, Ohio-based America Makes, the leading collaborative partner in additive technology research, discovery, and innovation for the US, announced its latest Project Call for AXIOM, or  Additive for eXtreme Improvement...


Shop

View our broad assortment of in house and third party products.