Controlling Thermal Distribution in 3D Printing with an Induction Coil

Share this Article

Many things can cause defects in 3D printed parts, including the buildup of residual stress during the printing process. This can be caused by uneven thermal distribution. In a thesis entitled “Control of Thermal Distribution in Additive Manufacturing,” a University of Michigan student named Aniket Chandrashekhar Jadhav attempts to provide a cost-effective solution to uneven thermal distribution through the use of an induction coil to heat the powder, rather than heating the entire bed.

SEM images of balls formed at a fixed laser power of 300W but different scan speeds of (a) 0.05m/s, (b) 0.08m/s, and (c) 0.1m/s

“Controlling the thermal distribution in the powder bed becomes extremely crucial in terms of porosity control, formation of residual stresses, crack initiation, curling, balling and the overall build quality of the parts,” says Jadhav. “Also, significant enhancements in the material properties of the powder metal can be achieved by maintaining constant thermal cycles and temperature profiles throughout the process.”

Research has been conducted into the introduction of induction coils along the edges of the powder bed to control the variation of temperature at different depths of the powder bed in order to achieve a gradual thermal gradiant during the 3D printing process. However, continues Jadhav, not much work has been put towards minimizing power consumption and optimizing thermal distribution at the same time with minimal modification in the powder bed setup, which is what the thesis project attempts to do.

Jadhav and colleagues used simulation and actual physical trials to test their method of auxiliary heating the substrate to control the thermal distribution and selectively heat the powder. Flux concentrators were used on the induction coils to concentrate and channel the magnetic flux along the desired path and heat the substrate more quickly and effectively. They successfully tested different grades of steel and titanium.

“This ensured minimal changes in operational parameters to easily adapt to substrates with different material properties,” says Jadhav. “The proposed design of the induction coil is small enough to be a convenient addition to any complex environment for improved heating.”

Jadhav suggests that there is a lot of room for improving and broadening the scope of the process, including using materials such as aluminum and copper. The simulations and data presented in the thesis are also limited to stationary heating of the substrate.

“Work still is in progress to study the effects of induction in translational motion and the required changes that will follow,” Jadhav explains. “These changes may be in terms of coil design modification or process optimization by fine tuning the parameters.”

Induction relies heavily on the coupling efficiency of the coil and substrate, Jadhav continues.

“This study provides good highlight over the improved magnetic flux density and a more contained magnetic field for substrate having a horizontal orientation. A detailed study of the effect of different orientations (e.g.: vertically orienting the substrate) on the coupling efficiency and thermal distribution would play an important role in applying the proposed technique to any Additive Manufacturing process.”

Jadhav also suggests trying different types of induction coils to optimize the process of induction and improve the efficiency of the system, with relatively lower power requirements.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

 

 

Facebook Comments

Share this Article


Related Articles

Presentations on 3D Printing Trends and Projects at RAPID 2019

Researchers Create Fuzzy Like PI Controller to Control FFF 3D Printer Extruder and Bed Heaters



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Researchers Work to Improve PLA Properties Through Thermal Treatment

PLA is one of the most commonly used 3D printing materials, but it is not without its problems. According to a group of researchers in a paper entitled “In-process thermal...

University of Michigan Researchers Develop New Ultrafast 3D Printing Technique: Two-Color Irradiation

University of Michigan researchers have developed a new vat polymerization 3D printing technique that produces objects at up to 100 times faster than current 3D printing techniques, as detailed in...

Researchers from S2A Lab Experimenting with Remote 3D Printing Control

Late last year, we learned that researchers with the Smart and Sustainable Automation Research Lab (S2A Lab) at the University of Michigan College of Engineering had been working to develop an algorithm that would double...

CYBER Team Uses FDM and Topology Optimization to Streamline Digital Workflow for 3D Printed Orthotics

The CYBER Team, which stands for Cyber-Physical Design and Additive Manufacturing of Custom Orthoses, is on a mission to leverage 3D printing and Industry 4.0 to make better Ankle Foot Orthotics...


Training


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!