Using 3D Printing to Sample the Ocean Floor

Share this Article

When we think of biodiversity, we may think of forests with wildly differing species of birds, insects and other animals, or seas with wide varieties of fish. Sometimes biodiversity is easily visible in these larger species, but often it can only be measured on a very small scale. Dr. Matthew Cannon, a research associate in the lab of Dr. David Serre at the University of Maryland School of Medicine’s Institute for Genome Sciences, is interested in measuring biodiversity using DNA from environmental samples such as fresh or marine water, sediments or soils.

The analysis of environmental DNA, or eDNA, is an effective technique of measuring biodiversity. Organisms living in a particular area can be identified and characterized by the cells and hair they leave behind, or their decaying remains, all of which contain DNA and can reveal to scientists the types of creatures that are present in any given location. Special tools are required for this kind of analysis, especially for the type of work that Dr. Cannon wants to do, which involves taking samples from deep underwater locations.

Methods of sampling eDNA from deep underwater locations are limited by the volume of water that can be collected, or because of potential contamination from surface water. The possibilities presented by collection of eDNA from these deep-water locations are intriguing, however, because a single sample can give researchers an idea of the total biodiversity of a site without direct organism sampling. These locations are difficult to explore; traditional methods such as collecting samples in trawl nets or expeditions with remotely operated vehicles are expensive and can miss organisms that can’t be captured by a net or that avoid the lights of a rover.

Therefore, Dr. Cannon wanted to explore alternative options for deep-water eDNA sampling. He designed and 3D printed a device that houses a water filter and pump, controlled by an Arduino, that can collect samples at any depth. The device allows for the collection of large samples, limited only by filtering time.

“3-D printing is allowing us to develop a prototype water sampler that might not have been practical to imagine or design a few years ago,” Dr. Cannon said.

Dr. Cannon used the 3D printer at the Health Sciences/Human Services Library Innovation Space to create his prototype, which he is now testing to ensure that the parts work well together. It only takes a few hours to 3D print each prototype, allowing him to quickly develop new iterations.

The University of Maryland prioritizes technological advancement; towards the end of last year the university opened a new center dedicated to bioengineering, and was one of the earlier schools to open a MakerBot Innovation Center. The school is responsible for some advanced 3D printing-related research, and Dr. Cannon’s work will put the university on the map once again for its use of technology to gain new insight into areas that have previously been unexplored.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: University of Maryland]

 

Share this Article


Recent News

COVID-19 Pandemic: 3D Printing Events Postponed, Cancelled, Moved Online

3DP AIPerfecter Offers Part Analysis to 3D Printing Service Bureaus



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

Sculpteo Now Officially Part of BASF, an Interview with Clément Moreau

With a market cap of $52B, German chemical giant BASF is near the top of the food chain within the 3D printing industry. It sits just below GE, with its...

Greater Potential for Artificial Intelligence in Additive Manufacturing

Researchers from China continue in the quest to continually top 3D printing capabilities, adding complex layers with other technologies into the fold, as detailed in the recently published ‘Smart additive...

REJOINT Uses EBM, Sensors & IoT Data for Patient-Specific Knee Surgery

REJOINT is an Italy-based medical device company specializing in Total Knee Arthroplasty operations that received 3 million Euro in EU Horizon 2030 funding in 2019. The firm is seeking US...

TPM to Increase Additive Production Processes with ZVerse360 Digital Manufacturing Platform

Two South Carolina-based companies are partnering up for the purposes of speeding production processes. Digital manufacturing technology company ZVerse, Inc. has developed the a CAD as a Service (CADaaS) platform...


Shop

View our broad assortment of in house and third party products.