Optomec Study Examines Directed Energy Deposition vs. Powder Bed Fusion 3D Printing

IMTS

Share this Article

Optomec is known for its LENS series of 3D printers, which utilize Directed Energy Deposition 3D printing technology. DED is a powder bed-based technology in which metal powder is continuously blown through nozzles directed at the focal point of a high powered laser. This creates a molten pool of metal, which is moved using a motion control system as the part is built up in free space. DED is a versatile technology that can be used not only to 3D print new parts but also to add on to an already existing part in order to repair or coat it, for example. It also lends itself well to hybrid manufacturing applications.

Optomec recently published a benchmark study on Directed Energy Deposition that reveals the technology to be 10 times faster and 5 times less expensive than Powder Bed Fusion (PBF) for building mid-size metal parts.

“The two most commonly-used commercial methods for laser-based metal additive manufacturing technology today are PBF and powder-fed DED. Each has core strengths and can be used for similar projects. So, what we wanted to clarify with this study was when is one method better than the other,” said Lucas Brewer, LENS Application Development Manager at Optomec. “We put both technologies to the same task and were surprised to see such dramatic differences in build time and cost. We believe this type of exercise will help customers better understand the strengths of each approach. We are always striving to help our customers improve build speed and maximize value from their machines.”

Optomec began the study to determine the relative print speed and price to 3D print a mid-size metal part made of Inconel. The part would be 200 mm in diameter and 150 mm tall. To establish a baseline, Optomec selected a part geometry that could be built without support structures, settling on a conical shape housing with interior tubular structures. Production was outsourced to two separate and independent service providers, one for Powder Bed Fusion and one for Directed Energy Deposition.

LENS 850R 3D Printer for Structural Metals – Short

The differences in cost and production time were startling. A Concept Laser M2 machine was used to 3D print the part using Powder Bed Fusion, and the build time took an estimated 240 hours with a quoted price of $16,800. An Optomec LENS 850R 3D printer was used to print the part using Directed Energy Deposition, and the build time took an estimated 18 hours with a quoted price of $3,200. You can see the full process parameters below:

Not only did the study show that LENS 3D printers produce parts in much less time for dramatically lower cost than PBF systems, they’re also less expensive to begin with, at less than half the cost of PBF 3D printers of equivalent size. You can download the full study for free here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: Optomec]

 

Share this Article


Recent News

3D Printing News Unpeeled: Asahi Kasei Enters 3D Printing

GE Additive Transforms into Colibrium Additive in New Brand Move



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Gorilla Sports GE’s First 3D Printed Titanium Cast

How do you help a gorilla with a broken arm? Sounds like the start of a bad joke a zookeeper might tell, but it’s an actual dilemma recently faced by...

Nylon 3D Printed Parts Made More Functional with Coatings & Colors

Parts 3D printed from polyamide (PA, Nylon) 12 using powder bed fusion (PBF) are a mainstay in the additive manufacturing (AM) industry. While post-finishing processes have improved the porosity of...

$25M to Back Sintavia’s Largest Expansion of Metal 3D Printing Capacity Since 2019

Sintavia, the digital manufacturing company specializing in mission-critical parts for strategic sectors, announced a $25 million investment to increase its production capacity, the largest expansion to its operations since 2019....

Velo3D Initiates Public Offering in a Bid to Strengthen Financial Foundations and Drive Future Growth

Velo3D (NYSE: VLD) has been among a number of publicly traded 3D printing firms that have attempted to weather the current macroeconomic climate. After posting a challenging financial report for 2023,...