Optomec Study Examines Directed Energy Deposition vs. Powder Bed Fusion 3D Printing

Share this Article

Optomec is known for its LENS series of 3D printers, which utilize Directed Energy Deposition 3D printing technology. DED is a powder bed-based technology in which metal powder is continuously blown through nozzles directed at the focal point of a high powered laser. This creates a molten pool of metal, which is moved using a motion control system as the part is built up in free space. DED is a versatile technology that can be used not only to 3D print new parts but also to add on to an already existing part in order to repair or coat it, for example. It also lends itself well to hybrid manufacturing applications.

Optomec recently published a benchmark study on Directed Energy Deposition that reveals the technology to be 10 times faster and 5 times less expensive than Powder Bed Fusion (PBF) for building mid-size metal parts.

“The two most commonly-used commercial methods for laser-based metal additive manufacturing technology today are PBF and powder-fed DED. Each has core strengths and can be used for similar projects. So, what we wanted to clarify with this study was when is one method better than the other,” said Lucas Brewer, LENS Application Development Manager at Optomec. “We put both technologies to the same task and were surprised to see such dramatic differences in build time and cost. We believe this type of exercise will help customers better understand the strengths of each approach. We are always striving to help our customers improve build speed and maximize value from their machines.”

Optomec began the study to determine the relative print speed and price to 3D print a mid-size metal part made of Inconel. The part would be 200 mm in diameter and 150 mm tall. To establish a baseline, Optomec selected a part geometry that could be built without support structures, settling on a conical shape housing with interior tubular structures. Production was outsourced to two separate and independent service providers, one for Powder Bed Fusion and one for Directed Energy Deposition.

LENS 850R 3D Printer for Structural Metals – Short

The differences in cost and production time were startling. A Concept Laser M2 machine was used to 3D print the part using Powder Bed Fusion, and the build time took an estimated 240 hours with a quoted price of $16,800. An Optomec LENS 850R 3D printer was used to print the part using Directed Energy Deposition, and the build time took an estimated 18 hours with a quoted price of $3,200. You can see the full process parameters below:

Not only did the study show that LENS 3D printers produce parts in much less time for dramatically lower cost than PBF systems, they’re also less expensive to begin with, at less than half the cost of PBF 3D printers of equivalent size. You can download the full study for free here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: Optomec]

 

Share this Article


Recent News

Zhejiang University Sheds Light on APVC with 3D Printed Surgical Models

State of the Art: Carbon Fiber 3D Printing, Part Five



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

State of the Art: Carbon Fiber 3D Printing, Part Four

In parts one, two and three of this series, we’ve discussed the variety of technological developments taking place in the 3D printing of composites but have not yet covered the...

Parameter Optimization for 3D Printing of Continuous Carbon Fiber/Epoxy Composites

In the recently published ‘A Sensitivity Analysis-Based Parameter Optimization Framework for 3D Printing of Continuous Carbon Fiber/Epoxy Composites,’ researchers continue to explore the world of enhanced materials for fabrication of...

State of the Art: Carbon Fiber 3D Printing, Part Two

In the first part of our series on carbon fiber 3D printing, we really only just got started by providing a background on the material, some of its properties, and...

State of the Art: Carbon Fiber 3D Printing, Part Three

So far, we’ve covered some of the key aspects of carbon fiber manufacturing and how continuous carbon fiber compares to chopped in early modes of carbon fiber 3D printing. However,...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!