AMS 2025

Washington State Researchers Simplify Multi Material 3D Printing

AM Research Military

Share this Article

Multimaterial 3D printing has become slightly more common recently, but it’s still complicated and difficult, especially in industrial 3D printing. Single material 3D printing is still much more common, but a group of researchers from Washington State University have made a breakthrough that could make multimaterial 3D printing much easier and more accessible. The researchers were able to 3D print with two materials in a single step, which could help manufacturers reduce the number of steps needed for their processes and use a single machine to make complex, multi-part objects in one operation.

The researchers, led by Amit Bandyopadhyay, Herman and Brita Lindholm Endowed Chair Professor in the School of Mechanical and Materials Engineering at Washington State, 3D printed structures containing metal and ceramic in one piece, as well as a bimetallic tube that is magnetic at one end and non-magnetic at the other.

This is big news for the manufacturing industry; if manufacturers are able to easily 3D print with multiple materials in one component, they will be better able to control properties such as heat conduction and corrosion protection, as well as environmental adaptation in their materials.

“This is a step towards the next level of manufacturing and the next generation of design, validation, optimization and manufacturing using 3D printing,” said Bandyopadhyay.

Multimaterial 3D printing will mean that manufacturers will no longer have to rely on adhesives to create multimaterial components. As strong as some adhesives are, they’re still not perfect.

“You could be joining two very strong materials together, but their connection will only be as strong as their adhesive,” said Bandyopadhyay. “Multimaterial, additive manufacturing helps get rid of the weak point.”

The researchers used a laser 3D printer to print a structure from Inconel 718, a nickel-chromium alloy, and copper. Inconel 718 is used for applications like liquid-fueled rockets and sheet metal parts for airplane engines. The material is good at withstanding high temperatures, but it cools very slowly. When copper was added to the part, however, it cooled 250 times faster. That amounts to longer life and higher fuel efficiency for airplane engines.

“Multimaterial additive manufacturing has opened the doors to so many different possible creations,” said Bandyopadhyay.  “It has allowed us to be bolder and be more creative.”

The researchers also 3D printed a structure made from both metal and ceramic in a single piece.

“This allows us to vary the composition and add functionality to a product during 3D printing that is traditionally very difficult to achieve,” Bandyopadhyay said.  “And we can do this in a single process with a single machine.”

The research was published in a paper entitled “Additive manufacturing of Inconel 718–Copper alloy bimetallic structure using laser engineered net shaping (LENS), which you can access here. Authors of the paper include Bonny Onuike, Bryan Heer and Amit Bandyopadhyay. Graduate students Tom Gualtieri and Yanning Zhang also participated in the research. The research was funded by Joint Center for Aerospace Technology Innovation, the National Science Foundation, and NASA’s Marshall Space Flight Center.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source/Images: Washington State University]

 

Share this Article


Recent News

3DPOD 230: AM for Aerospace, Defense and More with Tim Simpson, NASA & Penn State

ADDMAN Adds Continuous Composites Technology for Hypersonics and UAV Applications



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Lockheed Martin Adds 16,000 Square Feet of 3D Printing to Texas Facility

Defense giant Lockheed Martin has unveiled a substantial increase in its additive manufacturing (AM) capabilities with an expansion of its facility in Grand Prairie, Texas. The addition includes some 16,000...

Featured

EOS Launches New P3 NEXT SLS 3D Printer at Formnext 2004

EOS, the German-US leader in additive manufacturing (AM) solutions, has launched the P3 NEXT selective laser sintering (SLS) printer at Formnext 2024 in Frankfurt, Germany (November 19-22). EOS created the...

3D Printing Webinar and Event Roundup: November 10, 2024

We’ve got another busy week ahead of webinars and events around the world! There are multiple open houses and conferences, advanced AM training, a 3D printer launch event, our own...

Dinsmore Gains Ability to 3D Print Functional Stents Thanks to Axtra3D

As essentially everyone familiar with additive manufacturing (AM) knows, one of the greatest advantages of 3D printing technologies is the potential to produce parts with complex geometries that are unachievable...