Efficiency Through 3D Printing: CENIT Provides Updates on Bionic Aircraft Project

Share this Article

Bionic feature on the topology-optimized part including CATIA dialog box [Image: CENIT]

Many people are working hard to control the pollution that automobiles give out, with ideas that range from electric cars to cars with moss growing in their wheels. But airplanes are also responsible for a great deal of air pollution, and several organizations have joined together to develop a plane that will be more lightweight, increase resource efficiency and produce fewer emissions. The European Union-sponsored project is called Bionic Aircraft, and it began last year with a projected end date of August 2019. A consortium of 10 partners is working together on the project, which involves using bionic design and additive manufacturing for every part of the life cycle of an aircraft.

Roughly a year after the project kicked off, its participants are reporting that they have made quite a bit of progress. IT and software provider CENIT is developing a CATIA-based CAD catalog of parametrically defined bionic features in order to create bionically optimized components.

“This provides an automated toolbox to support the cost- and time-intensive manual interpretation and design of topologically optimized components in CAD,” said Jochen Michael, Senior Consultant at CENIT. “The parametrization of features also lets the designers adjust geometries more easily. That gives us an additional efficiency and quality boost during the design process.”

By the end of the project, CENIT plans to have developed a CAD catalog containing roughly 10 to 15 bionic features.

[Image: Fraunhofer IAPT]

“The declared goal of the project is to show how such a catalogue can be implemented in methodological and practical terms,” continued Michael. “That places the focus on fundamental research. It has to provide a basis for defining how bionic features can be harnessed to guide topological optimization, and what algorithms are best suited to component recognition and allocation of features.”

This will be the first CAD catalog to contain bionically optimized features.

Gyroid support structure [Image: CENIT]

The Fraunhofer Institute for Additive Production Technologies, IAPT is developing bionically optimized features based on analyses of quantitative characteristics, uses and benefits of topology-based components. The goal is to improve the components’ behavior in daily use and to make them as stable and lightweight as possible. Even minor adjustments can have a major effect: for example, the risk of component failure can be greatly reduced if components subject to tension loads are designed with fillets that replicate models found in nature. This feature will be included in the CAD catalog as a parametric model.

After programming the first bionic features in CAD, CENIT will work on feature recognition, a software tool that analyzes a topologically optimized component and allocates it, automatically if possible, to a functionally equivalent bionic component in the CAD catalog.

CENIT is also working on print preparation, mainly CAD-based generation of support structures and optimum alignment of components. To develop the support structures, CENIT relied on research from Fraunhofer IAPT, which conducted systematic studies of criteria such as tensile strength, powder consumption, removability of support structures and their influence on the surfaces of 3D printed components. The institution also has been working on new types of support structures such as graded lattice scaffolds or gyroids.

[Image: Fraunhofer IAPT]

CENIT worked with CATIA to develop functionalities for optimal, automated alignment of components, including supports. The organization is now working on supplying the production process with not only geometry data but geometry attributes such as external contour and surface quality, as well as defining printing methodologies. CENIT is currently developing a direct CATIA interface in collaboration with Aconity GmbH.

The institutions working on the Bionic Aircraft project have set goals of reducing the time needed for end-to-end development of bionic components by about 40% and significantly increasing the weight-saving potential of additively manufactured structures. The consortium will present its results so far to EU Commission at the midterm review of the project in April of this year.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source: CENIT]

 

 

Share this Article


Recent News

3D Printing News Briefs, October 5, 2024: JIMTOF, Sensors, Façades, & More

DOE Awards Iowa State $1M to Research 3D Printed Tungsten for Nuclear Energy



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Market Reaches $3.45B in Q2 2024, Marking 8.4% Year-Over-Year Growth

The global 3D printing market continued its upward trajectory in the second quarter of 2024, totaling $3.45 billion—a year-over-year increase of 8.4%. Despite a slight sequential decline from $3.47 billion...

New ABB Cobots Are 10 Times More Accurate for 3D Printing and More

ABB has introduced Ultra Accuracy GoFa cobots, which are ten times more accurate than the company’s previous cobots. While older industrial robots have driven innovation in concrete 3D printing, wire...

AM Expands Beyond 3D Printing at IMTS 2024

As discussed in our previous article on the Western hemisphere’s largest manufacturing trade show, the International Manufacturing Technology Show (IMTS), the industrialization of 3D printing was on display. This was...

Featured

Ursa Major & US Navy Make $25M Joint Investment in New 3D Printed Rocket Motor Prototype

Ursa Major, the Colorado-based company dedicated to building a North American rocket propulsion supply chain with advanced manufacturing, has become one of the first recipients of funding from the DoD’s...