University Researchers Creating Intelligent System to Support Hybrid Manufacturing for Industrial 3D Printing Applications

Share this Article

Hybrid manufacturing combines both additive and subtractive manufacturing technology in a single machine system, like equipping a CNC machine with 3D printing capabilities, to make things like propellers and advanced nuclear fuels. Many say it’s the future of the manufacturing industry, and University of Windsor PhD student Shane Peelar seems to agree. The computer science researcher, and his supervisor Luis Rueda, recently received an Ontario Centres for Excellence (OCE) Talent Edge Program fellowship to create an intelligent system that supports hybrid manufacturing.

The system is for industry partner CAMufacturing Solutions Incorporated, which develops CAD/CAM software for companies that use 3D printing together with traditional manufacturing methods like casting or welding.

CAMufacturing Solutions president Bob Hedrick says about 3D printing, “This is so cool because it is a brand-new manufacturing process. People have been machining, casting and forging for hundreds of years, where artisans and craftsmen taught each other — but this technology is coming directly from academic research, from the high-end down.”

The computing R&D partnership between Peelar and Rueda and CAMufacturing Solutions, which will run for 16 months, will support industrial 3D printing applications, and tackle any challenges by writing advanced computer code to solve them.

As we know, 3D printing technology requires users to send digital data to the 3D printer itself, which will then print the part. But according to Peelar, it’s not always easy to get the engineering workstation computers so often found in machine shops to properly handle these large amounts of data.

Peelar explained, “The computational requirements of additive manufacturing for Computer-Aided Design/Computer-Aided Manufacturing or CAD/CAM software are a lot bigger than traditional methods — the datasets are very large and more suited to be performed on super-computers than PCs, and it is not uncommon for companies to want to run these programs on older hardware, computers that are four or five years old.

“We need to design scalable algorithms that can run and perform on older and newer hardware to allow additive manufacturing operations to be performed in a reasonable amount of time because companies don’t want this process to take eight hours; they want the software to run and produce parts in real time.”

CAMufacturing provides software to different manufacturing companies to build real end products, and not just replicas. These parts aren’t cheap, and could cause damage if they aren’t structurally sound. So getting the computers in the machine shop to work properly, starting with 3D modeling, is imperative for business.

“These are real machine tools, complex tools you can put right onto a robot to start working in the shop. We work with all sorts of industries — automotive, military, medical, mould shops, and aerospace companies. There is no end to the application of this,” Hedrick said.

This partnership is a great way to bridge the gap between advanced manufacturing and computational approaches that use machine learning and artificial intelligence to understand real life problems and properly guide industrial tools.

Dr. Rueda said, “This kind of technology, and the solutions being developed by CAMufacturing, are fascinating, unique and globally recognized. Likewise, this project is a great opportunity for collaboration between the university and the fast growing industrial sector in the region.”

According to Peelar, he is not only training the program to run in a timely fashion, but he is also teaching the machine model to learn from its previous experiences.

Peelar explained, “By training the machine model, using human operator knowledge, then like a chess program the model should start to recognize defects as well as things that are working well.

“Eventually the model will suggest areas for improvement and human operators can confirm if this is true, which will train the model, after several intervals, until eventually it works on its own to solve problems with reasonably high effectiveness.”

Shane Peelar, a doctoral student of computer science, displays a sample 3D printed machine part. [Image: University of Windsor]

 Hedrick is pleased with the “advanced and impressive” solutions that have resulted from working with the university researchers.

“We couldn’t do this type of work without academic researchers. We work with a lot of large companies that are manufacturing equipment, and the product being developed here is keeping pace with what these companies are doing right across the globe,” Hedrick said.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source: University of Windsor]

 

Share this Article


Recent News

Titomic to Deliver Two Kinetic Fusion Systems to Composite Technology Under AUD $25.5M Contract

Wake Forest Researchers Claim to Bioprint Skeletal Muscle Constructs With Neural Cell Integration, in Rats



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Researchers to Disrupt & Boost Bioprinting with Suspension Bath Techniques

Researchers from the US and the UK have been working together on complex and unique bioprinting techniques, outlining their findings in the recently published ‘3D Printing in Suspension Baths: Keeping...

Studying 3D Printed PCL Structures in Tissue Engineering

Researchers from Sweden and Norway are making further strides in tissue engineering, with their recent findings published in ‘Computational and experimental characterization of 3D-printed PCL structures toward the design of...

Tissue Engineering: 3D Printed PLA Scaffolds for Seeding Human Dermal Fibroblasts

Researchers in Turkey are 3D printing with PLA in a new study regarding human dermal fibroblasts and tissue engineering of skin cells. Their new findings are outlined in ‘3D Printed...

Freeze-FRESH 3D Printing: Biomaterial Scaffolds with Hierarchical Porosity

Researchers Zi Wang and Stephen J. Florczyk of the University of Central Florida have developed a new technique for bioprinting, outlined in the recently published ‘Freeze-FRESH: A 3D Printing Technique...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!