Medical Device Company Uses Carbon 3D Printing Technology to Reduce Product Turnaround by 70%

Share this Article

Companies from around the world in many industries have called on Carbon, and its innovative Digital Light Synthesis (DLS) technology, to help with the development of many products, from shoes and race cars to mobile device protection solutions and an intraosseous infusion device that can be used to transfer fluids to patients in developing areas of the world who have experienced severe trauma.

DLS technology is a perfect fit for the medical device world, and Carbon recently explained the details of another medical 3D printing partnership in a new case study.

California-based BIOLASE, Inc. is a medical device company and Stratasys reseller that supplies dental imaging equipment, such as CAD/CAM scanners, and laser systems. The company decided to work with southern California contract manufacturer and 3D printing service bureau Dinsmore Inc., a previous Carbon partner, in order to replace a very important part of a medical device that has not yet been launched.

BIOLASE typically uses traditional urethane casting to make low-volume urethane polymer parts for medical devices, including the one it’s working on with Dinsmore. This manufacturing technique differs from injection molding in that it doesn’t require hard tooling and uses silicone molds. But, while urethane casting is less expensive than injection molding, it’s not exactly cheap to make and iterate the parts. Additionally, the turnaround time for urethane cast parts, like the ones in the image below, can last over a month.

3D manufactured clip used in the medical device developed by BIOLASE. [Image: Carbon]

The cost must be factored into the decision-making process about what manufacturing method to go with, as BIOLASE will be using thousands of the parts every year. Improving both the economics and time to market for the product are the two main factors why the two companies decided to go with Carbon’s technology to 3D print the part.

“While urethane casting worked in the past, the process still didn’t meet our requirements for cost and manufacturing turnaround time,” said Julio Cely, Mechanical Engineer, BIOLASE. “The speed of 3D Manufacturing with Carbon, along with a new material, gave us a high-quality part, at reasonable cost, that could be produced at scale.”

Product development teams have to consider multiple factors when manufacturing high volumes of parts using a traditional urethane casting process, such as incurring tooling costs and set-up costs that are associated with the tools, along with multiple master patterns. The tools will normally have only a 3-month shelf life, and limited run life of 25 to 30 cast parts per tool. So BIOLASE wanted to investigate if there was another manufacturing option that could be used to make its new medical device product at a lower cost and timeframe.

BIOLASE called on Dinsmore for help, and Dinsmore, well-versed in 3D printing for the medical field, rose to the challenge. Armed with the knowledge of what Carbon’s materials and M series 3D printers are capable of, Dinsmore made the decision to replace the previously urethane cast part with a 3D printed one.

Dinsmore chose Carbon’s versatile RPU (Rigid Polyurethane) material to make the part. The material, which is comparable to ABS and has an ultimate tensile strength of 45 MPa, allowed the 3D printed part to meet both fit and form requirements, as well as go above and beyond the performance requirements when measured in the part’s strength and rigidity.

While parts manufactured through urethane casting would normally take five to eight weeks to manufacture and receive approval from the BIOLASE product development and quality teams, by using Carbon’s 3D printers and materials, Dinsmore was able to 3D print a higher quality part, and get the necessary approval, in just two weeks’ time.

“Our work with the BIOLASE team and Carbon’s DLS technology allowed us to showcase our team’s expertise in design for additive manufacturing for the medical industry,” said Jay Dinsmore, CEO and Founder of Dinsmore, Inc. “We’re excited to continue to work with customers across industries and find new application opportunities for Carbon’s new additive manufacturing technology and materials.”

BIOLASE plans to make thousands of these parts each year for its soon-to-be-launched medical device. Thanks to switching from urethane casting to Carbon’s 3D printing technology, BIOLASE will likely save over $10,000 a year in overall production costs, as it will no longer require tooling and set-up costs and master patterns. In addition, the company has reduced its turnaround by about 70%, which will help in getting the device to market much more quickly.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

 

 

Share this Article


Recent News

3D Printing News Briefs, July 13, 2024: Metal 3D Printer, AFWERX Award, & More

3D Printing Markets Grows 8% Year over Year



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Vision Miner Acquires its 3D Printer Supplier AddWise

Vision Miner, a provider of industrial 3D printing solutions, has announced the acquisition of AddWise, a manufacturer of 3D printers and related products, in a deal valued that the companies...

“Auto Repair Needs 3D Printing” – Harold Sears Weighs in on Auto Additive’s Launch

Despite the automotive sector’s long-time adoption of additive manufacturing (AM), the use of the technology for end parts in consumer vehicles is only just now beginning to take off. And,...

Featured

Formlabs Buys Nascent SLS 3D Printer Competitor Micronics

Formlabs, maker of accessible yet professional 3D printers, has acquired Micronics, which recently debuted with a claim of making a $2,999 3D printer. I, for one, was pretty incredulous about...

The Producers: HP’s President of 3D Printing Savi Baveja Explains How the Company is Addressing Scalability

HP (NSYE: HPQ) and the additive manufacturing (AM) industry in the US need each other. In the long run, I believe that what’s good for one will be good for...