“With 3-D printing, you can make parts with very complex geometries that are not accessible for casting like regular metal parts,” said SLAC staff scientist Johanna Nelson Weker, who is leading the project. “Theoretically, it can be a quick turnaround – simply design, send, print from a remote location. But we’re not there yet. We still need to figure out all of the parameters involved in making solid, strong parts.”
The project is taking place at SLAC’s Stanford Synchotron Radiation Lightsource (SSRL) in collaboration with scientists from Lawrence Livermore National Laboratory (LLNL) and Ames Laboratory.

SLAC staff scientist Johanna Nelson Weker, front, leads a study on metal 3-D printing at SLAC’s Stanford Synchrotron Radiation Lightsource with researchers Andrew Kiss and Nick Calta, back. [Image: Dawn Harmer/SLAC]
“We are providing the fundamental physics research that will help us identify which aspects of metal 3-D printing are important,” said Chris Tassone, a staff scientist in SSRL’s Materials Science Division.
Observing a part while it’s being 3D printed isn’t enough to see how deeply the laser is melting the layers of metal powder. The researchers tried imaging the layers with thermal radiation, but that didn’t give them enough information to tell what was causing the weak spots. X-rays turned out to be the perfect answer, letting the scientists see inside the layers as they’re being printed. They’re currently using two different types of X-ray methods. One creates micron-resolution images of the layers as they build up; the other bounces X-rays off the atoms in the powder to analyze its atomic structure as it changes from solid to liquid and back during melting and cooling.
The scientists also plan to study directed energy deposition processes, and they want to add a high-speed camera so that they can collect photographs and video and correlate what they see with their X-ray data. This is valuable for manufacturers and researchers who use cameras to observe the 3D printing process but don’t have access to an X-ray synchrotron.
“We want people to be able to connect what they see on their cameras with what we are measuring here so they can infer what’s happening below the surface of the growing metal material,” said Nelson Weker. “We want to put meaning to those signatures.”
Other researchers working on the project include Kevin Stone, Anthony Fong, Andrew Kiss and Vivek Thampy. The research was funded by the DOE Office of Energy Efficiency and Renewable Energy’s Advanced Manufacturing Office.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
[Source: SLAC]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3DPOD Episode 176: 3D Printing in Singapore with Chaw Sing Ho, CEO of NAMIC
As CEO, Chaw Sing Ho spearheads National Additive Manufacturing Innovation Cluster (NAMIC), Singapore’s national initiative for 3D printing. In our in-depth conversation with him on the 3DPOD, we explore the...
Xometry Taps Google Cloud for AI Boost and Sees Q3 Growth
Xometry‘s (Nasdaq: XMTR) announcement of its strategic partnership with Google Cloud, a key division of Alphabet, aims to accelerate the digitization of manufacturing globally, marking an essential step in the...
Nikon Backs Ai Build’s Smart 3D Printing Software in $8.5 Million Series A
When there’s a gold rush, the best bet is to invest in picks and shovels. When it comes to the additive manufacturing (AM) industry, that means backing the software that’s...
Amplifying Additive Manufacturing with Artificial Intelligence
Additive manufacturing (AM) continues to evolve in the dynamic manufacturing landscape, and integrating Artificial Intelligence (AI) has proven to be transformative. Both have independently made waves, redefining what’s possible in...