Additive Manufacturing Strategies

3D Printed Sensor Mimics Seal Whiskers to Detect Underwater Vortices

ST Medical Devices

Share this Article

The word pinniped refers to semi-aquatic fin- or flipper-footed mammals, including to seals, sea lions and walruses. These creatures also have whiskers, which are part of what makes them so adorable and referred to by some as the puppies of the sea, but these whiskers serve an important purpose – they help the pinnipeds track their prey underwater by sensing the vortices left behind by the movement of said prey. A group of researchers in the Department of Mechatronics Engineering at Jeju National University in South Korea believe that a sensor based on the pinnipeds’ method of hunting could be valuable for soft robotics and underwater exploration, so they set out to create one using 3D printing.

The research was described in a paper entitled “Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater-Induced Vortex Detection,” which you can read here. The artificial whisker was 3D printed with polyurethane as well as graphene, which was printed in four patterns using a multi-head 3D printer.

“The four graphene patterns (90° apart) on the polyurethane cylinder enable the flow detection in all directions (0–360°). The length and diameter of the polyurethane cylinder and graphene patterns are 160 × 8 mm and 60 × 0.3 mm, respectively,” the researchers explain. “The conductivity of the printed graphene pattern is 0.6 Ω-cm. With a maximum deformation distance of 5 mm in any direction (0–360°), a substantial change in resistance is observed (from 5.09 × 103 to 6.03 × 108 Ω). The change in resistance in four directions (up, down, left, and right) is studied in an underwater environment.”

The clockwise and counter-clockwise vortices were generated by using an artificial fish fin, also 3D printed. The highly sensitive whisker sensor is the first to be 3D printed out of polyurethane and graphene. The dual-extruder 3D printer was used to print the sensor itself, using the first head, out of polyurethane purchased from Fotopolymer, while the second head printed the graphene patterns from filament bought from Black Magic 3D. After printing was complete, the base and the patterns were connected using copper tape. Copper tape was also used to solder signal wires, and a final 1mm water protection polyurethane layer was dip coated and cured with UV light.

The researchers then tested the sensors, using them to detect the vortices by digitizing the analog signals that indicate resistance changes and sending them to a microcontroller. They concluded that the design and fabrication of the whisker sensor is simple, quick, low cost, and easily deployable in commercial applications, as well as delivering good sensitivity and mechanical reliability. Some further development is needed; however, the study was overall a successful one.

“This paper is a wonderful example of bioinspired soft robotics,” said Barry A. Trimmer, PhD, Editor-in-Chief of Mary Ann Liebert, Inc., which published the study. “The authors have used observations of a natural system to build a materials-based sensor that can be used on underwater robots for better positional control, navigation, and object detection.”

Authors of the paper include Jahan Zeb Gul, Kim Young Su, and Kyung Hyun Choi.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Mary Ann Liebert, Inc.]

 

Share this Article


Recent News

Kornit Digital Buys Tesoma, Expanding Digital Textile Production

Customized Vehicles, On-Site Medical 3D Printing, and Green Lasers—All at TIPE 2022



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing People: A Dialogue Beyond Industry at TIPE 2022

Women in 3D Printing (Wi3DP) has pulled off another virtual event show coup. After an immensely successful inaugural event in 2021, the non-profit has hosted an even bigger 2022 event. And...

3D Printing Webinar and Event Roundup: January 16, 2022

We’re back in business this week with plenty of webinars and events, both virtual and in-person, starting with the second edition of the all-female-speaker TIPE 3D Printing conference. There are...

Women in 3D Printing’s Posts Agenda for TIPE Conference and Virtual Career Fair

This January 18-20, Women in 3D Printing (Wi3DP) is back for the second time in a row with its TIPE 3D Printing Conference and Virtual Career Fair. Like its inaugural...

Ford and Czinger to Give Automotive 3D Printing Keynotes at AMUG 2022

As the 2022 AMUG Conference approaches, the Additive Manufacturing Users Group (AMUG) has announced its keynote speakers. Headlining the event, set to take place in Chicago, Illinois from April 3-7, are Kevin...


Shop

View our broad assortment of in house and third party products.