3D Printing Speeds Product Development Cycle for Tuberculosis Diagnostic Device

Share this Article

Sometimes projects don’t work the way you want or need them to the first time, and as the saying goes, if at first you don’t succeed, try, try again. The Global Good Fund, a collaboration to develop technologies for humanitarian impact between Bill Gates and global invention company Intellectual Ventures (IV), recently turned to Carbon and its CLIP technology to get the job done right when their first attempt at making the case for an affordable, easy-to-use diagnostic device for TB proved to be too expensive and slow.

“Technology is the closest thing to magic we have in the real world, and Global Good wields its inventive magic to change the lives of those who need it most—the billion-plus who struggle on the bottom rungs of the economic ladder,” said Nathan Myhrvold, the Founder and CEO of Intellectual Ventures. “We’re always looking for ways to bring our ideas to market faster and at lower cost. Carbon is helping us do that.”

According to the 2016 Global TB Report by the World Health Organization (WHO), 10 million people around the world contracted TB in 2015, with 41% of that number going either unreported or undiagnosed – which means untreated. Most of these people live in the developing world, and the report shows that this lack of reporting and diagnosis is a critical gap in the fight against TB. That’s why Global Good is working to develop an early TB diagnostic device for the countries that don’t have a quality healthcare infrastructure.

The goal of Global Good and IV Lab scientists was to develop an accurate diagnostic method for the disease that costs less to manufacture, is easy to use, and works more quickly than traditional diagnostic methods. The team got their idea for the new product design from lateral flow assay tests that already exist for home pregnancy tests and malaria diagnostic devices.

Tuberculosis diagnostic cassette, 3D printed using Carbon technology.

The design for the TB test calls for a urine sample, rather than sputum collection, to detect a TB biomarker, and contains a lateral flow strip, with detection reagents, inside a thin plastic cassette. The product development team at IV Lab traditionally uses a four phase product development cycle:

  1. Design and prototyping
  2. Mold development
  3. Injection molding product manufacturing
  4. Field testing

IV is no stranger to 3D printing technology, and uses an FFF method to create prototypes for its inventions, like the TB diagnostic device, before turning to short-run injection molding for the final part. But, when it came to the TB cassette, this usual prototyping approach was taking too long, and, according to Carbon, each long injection mold iteration costs around $25,000 per mold. In five months, the IV Lab team only completed a few iterations, and ran into trouble with mold failures and delays related to modifying the molds, which also cost money – not the best solution when the goal is design a product that is cost-effective.

A lateral flow strip is placed between the two 3D printed parts of the diagnostic cassette housing.

Looking for a more efficient way to manufacture the device, the IV Lab team turned to Carbon and its DLS-powered M Series 3D printer. The company’s industrial 3D printer design and powerful software helped IV Lab get back on track right away, and it took the team less than a week to 3D print its first cassette design. IV Lab also took advantage of Carbon’s end-to-end digital manufacturing process to complete 10 product design iterations, using Carbon’s Rigid Polyurethane (RPU 70) material, in half the time its traditional approach took.

Side scuttle 3D printed in RPU material

Thanks to Carbon’s flexible, on-demand manufacturing, IV Lab had no constraints for minimum order quantities of parts, decreased material waste, and no parts inventory maintenance. The team was able to use the same materials and 3D printers for all parts of its product development cycle, from iterations and functional validation to manufacturing the final part.

According to Carbon’s case study, “Traditional manufacturing requires different materials and different technologies at each stage, which results in reduced flexibility, long delays, and operational inefficiencies. Leveraging Carbon’s technology, IV Lab was able to reduce end-product costs significantly while increasing the number of product design iterations by two to three times. The cost reduction is a phenomenal achievement for IV Lab given the mission to create a low-cost solution for the developing world.”

By working with Carbon to move from slow, inefficient traditional manufacturing to 3D printing, the IV Lab team and Global Good were able to successfully field test over 1,000 3D printed TB diagnostic tests. They met their goal of developing a product prototype that could be tested in the field—bringing the team one step closer to delivering a low-cost, easy-to-use and fast TB diagnostic device, which will be instrumental in diagnosing people in developing countries, and one day ridding the world of the disease.

What do you think of this case study? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share in the Facebook comments below.

[Images: Carbon]

 

Share this Article


Recent News

Blueprint Launches Technology Enablement Program—Brings Greater Knowledge to 3D Printing Users

MIT: A New Fiber Ink With Electronics Embedded Inside



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

TU Delft Researchers Create Soft Robotics that Respond to Color-Based Sensors

As 3D printing and robotics continue to collide and complement each other, new machines are being created. In soft robotics, we’re seeing the emergence of a class of machines that...

MIT: Automated System Designs and 3D Prints Optimized Actuators and Displays to Spec

Actuators are complex devices that mechanically control robotic systems in response to electrical signals received. Depending on the specific application they’re used for, today’s robotic actuators have to be optimized...

Using Casting, Graphene, and SLM 3D Printing to Create Bioinspired Cilia Sensors

  What Mother Nature has already created, we humans are bound to try and recreate; case in point: biological sensors. Thanks to good old biomimicry, researchers have made their own...

Nanyang Technological University: Inkjet Printing of ZnO Micro-Sized Thin Films

In ‘Inkjet-printed ZnO thin film semiconductor for additive manufacturing of electronic devices,’ thesis student Van Thai Tran, from Nanyang Technological University, delves into the realm of fabricating products with conductive...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!