Sculpteo Gives Us the Lowdown on Carbon’s Rigid Polyurethane Resin in New Q&A

Share this Article

Carbon M1 3D printer

Carbon M1 3D printer

It’s been well over a year since Carbon had the entire 3D printing industry clamoring in excitement about their exhilaratingly fast and potentially revolutionary Continuous Liquid Interface Production (CLIP) technology, which was unveiled by CEO Joseph DeSimone during a TED Talk back in March 2015. Earlier this year, we finally received the first impressions of Carbon’s M1 commercial digital light projector (DLP), the first-ever 3D printer equipped with CLIP technology. The technology is unique in its use of light and oxygen to cure a photosensitive resin, creating a ‘dead zone’ that offers a thin layer of uncured resin between the window and the object. This process has effectively eliminated layering, leading to unbelievable speed capabilities, which has gotten the entire 3D printing community standing at attention and ready for more.

Since the unveiling of the M1, Carbon has partnered with a handful of companies both inside and outside of the 3D printing industry, inking deals with major companies such as Kodak and Ford, as well as 3D printing service providers like the France-based Sculpteo. It seems pretty evident that Sculpteo is truly enjoying their experimentation with the M1, having released a breakdown of the four CLIP-compatible resins in their blog last month. Now, Sculpteo is individually focusing on each one of Carbon’s resin materials in a new series featuring the expertise of 3D printing engineer Chris Lau, to whom Sculpteo has awarded the title of ‘M1 specialist’. In their first post, Lau and Sculpteo discuss the details of their favorite resin in the entire bunch, the Rigid Polyurethane (RPU).

Nozzle part printed in RPU resin

Nozzle part printed in RPU resin

The RPU is a black opaque resin that gives the impression of a slightly smooth and shiny injection molded part after curing process is complete. If the resin is polished after being cured, it takes on a strong matte appearance. Although the CLIP technology prides itself on eliminating layers from the 3D printing process, a finished object in the RPU might look layered depending on the orientation of the 3D model, but according to Sculpteo, these are just artifacts coming about from the CLIP process, rather than machine layering that would suggest a more fragile part. In fact, stiffness and strength are what the Rigid Polyurethane are prized for, outperforming ABS plastic while holding its own against nylon.

Bike pedals printed in RPU resin

Bike pedals printed in RPU resin

RPU is ideal for printing mechanical parts that require toughness, as well as resistance to heat and abrasion. This particular resin is ideal for functional and use-end parts where laser sintered Nylon just doesn’t cut it. Thus far, Sculpteo has utilized for production by a number of their pilot customers, many of whom have turned to the RPU for its exceptional strength and ductility. The resolution promoted by the RPU resin is extremely high, capable of 3D printing features as thin as 0.25 mm. The suggested thickness of resin is heavily dependent on the structural features of the 3D model, which can range from relatively flexible to tough and rigid.

As for printing moving components, Sculpteo still has a bit more experimentation to perform with support structures, which has prevented them from offering interlocking designs with any CLIP resin thus far, although it should be possible in theory. Another issue that could arise when printing with RPU is the inability to print a design with an enclosed hollow region, which will lead to resin being trapped within the object’s cavity. Because of this, 3D models prepped for printing on the M1 should be equipped with an opening to help drain the excess resin out.

sculpteo-logoFor consumers, Sculpteo offers two different finishes for the RPU resin, either raw (supports removed) or hand polished (manually sanded and polished as well). The pricing for printing with CLIP technology will follow suit with other printing services provided by Sculpteo, you’ll simply upload your 3D design and receive a real-time price quote right away, which can be further adjusted to alter the price later on. But, remember, these CLIP resins are still in an early stage of development, and will continue to be tested before becoming available to customers. If you’re interested in utilizing their services to print something with the M1, you can join Sculpteo’s CLIP Pilot Program, which will provide consumers with guidelines and feedback on their designs before being manifested from this unique pool of Rigid Polyurethane resin. Discuss further over in the RPU 3D Printing Resin forum at 3DPB.com.

[Source: Sculpteo]

Share this Article


Recent News

Medical Startup axial3D Raises U$S 3 Million To Expand To New Markets

Carnegie Mellon: Optimizing Soft Materials 3D Printing With Machine Learning



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

4D Printing in China: Shape Memory Polymers and Continuous Carbon Fiber

Researchers have been looking further into the benefits of shape memory polymers (SMPs) with the addition of raw materials in the form of continuous carbon fiber (CCF). Authors Xinxin Shen,...

3D Printed Wireless Biosystems for Monitoring Cerebral Aneurysms in Real Time

Continuing to further the progress between 3D printing and electronics within the medical field, authors Robert Herbert, Saswat Mishra, Hyo-Ryoung Lim, Hyoungsuk Yoo, and Woon-Hong Yeo explore a new method...

Feasibility Models to Determine Efficacy of 3D Printing Over Traditional Methods

In ‘Model for Evaluating Additive Manufacturing Feasibility in End-Use Production,’ authors Matt Ahtiluoto, Asko Uolevi Ellman, and Eric Coatenea encourage the idea of exploring 3D printing for designs first, comparing...

Refining Macro and Microscopic Topology Optimization for AM Processes

Researchers from Italy and Germany continue along the path so many are following in refining and perfecting 3D printing processes. In the recently published ‘Structural multiscale topology optimization with stress...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!