3D Bioprinter Offers New Treatment for Type 1 Diabetes

IMTS

Share this Article

Researchers at the University of Wollongong have done some impressive things. They’ve 3D printed brain tissue, and developed a 3D printing pen capable of drawing cartilage into knees. They’ve created an advanced soft robotic hand. And now they’ve developed a new 3D bioprinter that could revolutionize the way Type 1 diabetes is treated.

The bioprinter is called the Pancreatic Islet Cell Transplantation (PICT) 3D Printer, and it addresses the needs of patients suffering from severe cases of Type 1 diabetes. Those cases are currently treated with donor islet cells, which restore the patients’ ability to produce insulin and regulate their blood sugar. The bioprinter at the University of Wollongong is capable of delivering insulin-producing islet cells from a protective bioink into a 3D printed scaffold that can be transplanted.

Using the bioprinter for transplants could reduce the risk of rejection, as the patient’s own cells could be used. In addition, because multiple types of cells could be 3D printed in the same run, endothelial cells, which are responsible for generating blood flow to the grafted islet cells, could be implanted, improving islet cell survival.

The 3D printer was developed by ARC Centre of Excellence for Electromaterials Science (ACES) and ANFF Materials, which is based at the University of Wollongong. Last week, it was delivered to South Australian Minister for Health Peter Malinauskas for use at the Royal Adelaide Hospital (RAH). The RAH is the first hospital to receive access to the 3D printer, which will be further developed with funding from an Australian Research Council’s Linkage, Infrastructure, Equipment and Facilities (LIEF) grant.

“ACES at the University of Wollongong has built a collaborative clinical research network that enables us to tackle big clinical challenges and deliver practical solutions using 3D bioprinting,” said Professor Gordon Wallace, ACES Executive Director and ANFF Materials Director. “In collaboration with Professor Toby Coates’ team at Royal Adelaide Hospital, we plan to improve the effectiveness of islet cell transplants by encapsulating donated islet cells in a 3D printed structure, to protect them during and after transplantation.”

Professor Gordon Wallace

The number of people living with diabetes – both Type 1 and Type 2 – has risen to over 400 million globally, and it’s expected to continue to rise, with the World Health Organization predicting that it will be the seventh leading cause of death in 2030. In addition to being potentially deadly, the disease can also cause blindness, kidney failure, heart attacks, stroke, and lower limb amputation. The PICT 3D printer has the potential to make the treatment of Type 1 diabetes more effective, and the research going on at the university and the hospital has the potential to develop new treatments and potentially even cures for all patients suffering from the disease.

“The PICT Printer will allow us to make customised organs, mixing donor with recipient cells in a unique 3 Dimensional way to provide completely new composite ‘organoids’ for experimental transplantation,” said Professor Toby Coates, RAH Director of Kidney and Islet Transplantation.

The PICT 3D Printer can therefore be added to the list of amazing things the University of Wollongong has done with 3D printing – a list that seems to just keep growing.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source/Images: University of Wollongong]

 

Share this Article


Recent News

3D Printing Financials: Materialise Reports Growth in 2023 with Medical Segment Success

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Unpeeled: Solenoids, Hydrogel Buildings and Missiles

Malgorzata A. Zboinska and others at Chalmers University of Technology and the Wallenberg Wood Science Center have managed to 3D print a hydrogel made of alginate and nano-cellulose. They hope...

Featured Sponsored

3DXTECH Launches “Pellet to Part” Program for 3D Printing Materials

Always looking to shake up the material extrusion segment of 3D printing, Michigan-based 3DXTECH has introduced a novel initiative named the “Pellet to Part” program. To further drive collaboration with...

Interview: NAGASE Facilitates AM Adoption with EMPOWR3D 3D Printing Brand

The additive manufacturing (AM) market is entering a new phase in which large companies from outside of the segment have entered and begun consolidating. In reality, this trend has been...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...