I have to admit that I was not an early adopter of the smartphone. Nor was I enthusiastic when I finally caved and bought one (read: couldn’t find a phone with buttons). It has about 99 functions and I use, approximately, two: the one that lets me ignore incoming phone calls and the one that lets me shine a flashlight down my daughter’s throat when she says she’s too sick to go to school in the morning. In the years since, I have had to begrudgingly admit that it does have some pretty cool features, not only can I make my face look like a puppy, but now researchers at the University of Houston have developed a way that I could use it to actually analyze the bacteria my daughter claims to have through a 3D printed microscope attachment.
The paper describing the process, authored by Yulung Sung, Fernando Campa, and Wei-Chuan Shih and titled “Open-source do-it-yourself multi-color fluorescence smartphone microscopy“, was published in Biomedical Optics Express but the researchers have also released an open-source dataset complete with instructions for anyone who is interested in creating their own smartphone microscope. The attachment uses an inexpensive inkjet-printed elastomer lens and LEGO bricks, among other inexpensive components, and it is capable of fluorescence microscopy, a form of optical microscopy that uses a light source to generate an image. Traditionally, the tabletop microscopes using fluorescence utilize a light that shines on the sample from above, with the smartphone attachment the light is instead shone onto the side, which is approximately one millimeter thick.
With this simple attachment, users could detect waterborne pathogens, for example, and are able to examine subjects with a resolution of up to two microns. While the results are not as clear as those from a desktop microscope, they are certainly of a high enough quality to prove more useful than no microscope at all. And the UH researchers’ hope is that it will be accessible to the widest possible audience, as the researchers described in their paper:
“Fluorescence microscopy is a powerful tool in cellular and microbiological investigations, but has been limited to laboratory use due to lack of simple portable setups. Although recent developments in smartphone microscopy have made significant strides, existing embodiments only have moderate adoption due to various technical challenges…We have integrated a single add-on lens and slide-launched, TIR-guided illumination with an entry-level phone…Furthermore, the modular, 3D printed design ensures universal device compatibility, and the orthogonal illumination and imaging angle ensure that the setup can be compatible with different lenses.”
The team hopes that this could expand access to this kind of technology into rural locations and developing countries for use in areas such as medical diagnostics, greatly expanding the amount of information that could be collected from cells and tissues. The team hopes that the technology will allow anyone with an interest to utilize it and have wholeheartedly adopted the open source ideology so rampant in the DIY and 3D printing communities, as Associate Professor of Electrical and Computer Engineering Wei-Chuan Shih explained:
“We really hope anyone who wants to build it can. All the pieces can be made with a 3D printer. It’s not something that belongs just to the lab. I feel more and more excited about seeing people adopt simple, basic scientific gadgets. I think it will have more impact if we let people play with it, rather than trying to hold it as a secret. We should make it as easy and accessible as possible for everyone.”
The research was made possible in part by a grant of $100,000 from the National Science Foundation (NSF) Citizen Science Initiative, a program designed to encourage researchers to develop projects that expand access and understanding of science to the general public.
The smartphone is quickly becoming the Swiss Army Knife of the 21st century, with nearly three billion in use today and a prediction for a further three billion to be in use by 2020. In fact, I would think having a smartphone and a Swiss Army Knife would mean there was just about no challenge that could not be met. Combine this with the power of 3D printing and you have something that has encouraged large numbers of people to throw their energy and intellect into creating ever more device adaptors that put powerful abilities in the hands of the masses. It’s only a matter of time before James Bond is analyzing waterborne pathogens (or possibly just the contents of his next martini).
What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your comments below.
[Source/Images: UH]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Divide by Zero Releases $500 Altron 3D Printer with Advanced Features
Indian original equipment manufacturer (OEM) Divide by Zero Technologies has released its latest 3D printer, the Altron. Priced at $500, the machine features spaghetti detection, automatic calibration, nozzle height detection,...
3D Printing News Briefs, September 12, 2024: Scholarships, Pool Maintenance, Shoes, & More
In 3D Printing News Briefs today, four graduate students received $10,000 scholarships from ASTM International, and 3DPRINTUK announced the first commercial launch of the Stratasys SAF printer in the UK....
Stratasys vs. Bambu Lab: A 3D Printing Patent Dispute with Far-Reaching Implications
Additive manufacturing (AM) stalwart Stratasys Ltd. (Nasdaq: SSYS) has initiated legal action against Bambu Lab and its associated entities, alleging patent infringement by their 3D printers. Filed in the US...
Regular, Medium, and Large Format 3D Printing Explained
At Additive Manufacturing (AM) Research and on 3DPrint.com, we use the terms regular, medium, and large format to segment the 3D printing market. We developed these terms to help bring...