3D Printed Replacement Gear Lasts Welder Seven Months

IMTS

Share this Article

3d-printed-replacement-gear

3D Printed Gear for MIG Welder

It’s been widely agreed upon since the early 1980s that the direct value of 3D printing is found in rapid prototyping. 3D printing prototypes helps companies speed up product development cycles by taking advantage of inexpensive, fast, and often complex design iterations. In an increasingly competitive free market, companies are discovering new ways to use their 3D printers and testing the boundaries of commonly used materials.

Using traditional manufacturing to create replacement parts and manufacturing aids is a slow and cumbersome process, and has given way to advanced manufacturing processes like 3D printing. Although 3D printed replacement parts aren’t usually a lasting solution, their implementation helps companies prevent a delay in the flow of production, as is the case for an Imgur user going by the handle bloomautomatic when they needed a new pinion gear for their c.1992 MIG welder. While bloomautomatic waited for a replacement nylon gear to be shipped out, they printed an exact replica using Folgertech PLA on a Monoprice Select Mini desktop 3D printer. The total print time was only about 30 minutes and cost was less than a quarter.

Original-Gear

Original Gear (left) Compared to 3D Printed Gear

Bloomautomatic stated that the gear was used in production for seven months and approximately 80,000 cycles before they finally needed to install the official nylon replacement gear. This far exceeded the expectations of one Imgur user who stated, “should last 2 minutes.”

The photos in the original post from bloomautomatic clearly show the original nylon gear next to the 3D printed version. In the followup photos posted seven months later, the deterioration of the gear in evident, but had it not been for the replacement nylon gear being readily available, the replacement gear could have been turned around and used for another seven months (or bloomautomatic could have just 3D printed another gear in half an hour for about $.20).

3D-Printed-Gear

3D Printed Gear for MIG Welder

According to bloomautomatic, the reason the pinion gear is made out of a non-metallic material is, “you want one gear to be the sacrificial gear to save the rest of the metal gears from wear.” This prevents the entire gearbox from being destroyed in case there’s a jam.

Gear-Seven-Months

3D Printed Gear for MIG Welder After Seven Months

In the event that another replacement gear is needed, one can only speculate that stronger 3D printed materials could potentially turn a temporary part into a long-term solution. Many desktop 3D printers are being designed with increased capabilities that allow them to handle higher-end materials such as PETG, ASA, multiple blends of nylon, polycarbonate, and carbon fiber-filled materials. This is especially attractive to manufacturers and hobbyists looking to use 3D printing for production tools or end-use parts.

Increased capabilities and new competition in desktop 3D printing are lowering the cost of adoption for risk-averse companies looking to test out digital manufacturing processes in-house. These advancements in 3D printing hardware, combined with knowledge of how to optimize designs for 3D printing, are helping to move past the common reputation that 3D printing is only a prototyping tool. Still, we do need to keep existing limitations in mind, as bloomautomatic also noted, “The original one lasted about 25 yrs.”

3D printing is increasingly being used for replacement parts, such as useful welding gears and automotive components. Entire digital libraries have emerged to supply design files, and many companies are studying the feasibility of 3D printing in on-demand replacement parts manufacture.

Have you ever turned to 3D printing for replacement parts? Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source: Hackaday / Images: bloomautomatic via Imgur]

 

Share this Article


Recent News

Liquid Metal 3D Printing Sector Emerges with Fluent Metal’s $5.5M Investment

3DPOD Episode 191: Amy Alexander, 3D Printing at the Mayo Clinic



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3DPOD Episode 190: Generative Design for 3D Printing with Novineer CEO Ali Tamijani

Ali Tamijani, a professor in the Department of Aerospace Engineering at Embry-Riddle Aeronautical University, has an extensive background in composites, tool pathing, and the development of functional 3D printed parts,...

Featured

3DPOD Episode 189: AMUG President Shannon VanDeren

Shannon VanDeren is a consultant in the 3D printing industry, focusing on implementation and integration for her company, Layered Manufacturing and Consulting. For nearly ten years, she has been involved...

3DPOD Episode 188: Clare Difazio of E3D – Growing the Industry, and Growing With the Industry

Clare DiFazio’s journey into the 3D printing industry was serendipitous, yet her involvement at critical moments has significantly influenced the sector. Her position as Head of Marketing & Product Strategy...

Featured

Printing Money Episode 15: 3D Printing Markets & Deals, with AM Research and AMPOWER

Printing Money returns with Episode 15! This month, NewCap Partners‘ Danny Piper is joined by Scott Dunham, Executive Vice President of Research at Additive Manufacturing (AM) Research, and Matthias Schmidt-Lehr,...