Femtosecond Lasers for Use in Additive Manufacturing

Share this Article

“All I ask for is one simple request, and that is to have sharks with frickin’ laser beams attached to their heads!” (Credit: Dr. Evil, Austin Powers Goldmember). Perhaps, if Dr. Evil was an Additive Engineer, he may have rephrased as such: “All I ask for is one simple request, and that is to have Additive Machines with frickin’ femtosecond lasers attached to their optic systems!”  Pretty cheesy, but you get the gist.

Femtosecond lasers have been used for decades in micro-machining to achieve machining with nearly zero thermal stresses and precise dimensional tolerance. Due to the short pulse width and high energy of a femtosecond laser, thermal stresses are kept local and do not deform surrounding areas of the metal.

Representative thermal picture of femtosecond laser (fs) vs current nanolaser (ns) in an additive machine

PolarOnyx, an additive manufacturing company based out of San Jose, California, has created a first-of-its-kind femtosecond laser-based additive system. Traditional DMLM (Direct Metal Laser Melting) machines use what’s known as CW or Continuous Wave lasers. These lasers, although ideal for low-temperature parts such as aluminum and titanium, have shown to have challenges with higher-temperature materials such as tungsten and iron. Higher-temperature materials require quite a bit more energy to bond metal particles together as compared to their lower temperature counterparts. Due to this increase in energy, CW lasers must output much more laser power. However, their pulse duration (i.e. how long the laser stays on) does not change. Thus, surrounding metal particles are affected and what are known as “thermal stresses” are built into the part itself.

Samples of tungsten parts on tungsten substrates with various shapes and density. The gear has a 1/2-in. diameter (left), while the thin wall (right) has a thickness of 100 µm. [Image: PolarOnyx]

In comparison, femtosecond lasers with their much shorter pulse duration are able to instantaneously ionize and bond the metal particles together with nearly zero thermal stresses. By being able to instantaneously melt particles together, femtosecond lasers also have an innate advantage in building denser parts.

Additionally, PolarOnyx was also able to successfully print iron powder directly on glass. Iron and glass have different but very close melting temperatures. With traditional CW lasers, the thermal buildup would have caused the glass to crack. However, with the femtosecond laser process and its ability to quickly fuse the iron powder, the iron was able to melt without causing any damage to the glass substrate.

Iron and Glass Property Comparison

Most interesting is PolarOnyx’s vision for a process whereby both the additive and subtractive properties of femtosecond lasers are integrated into one machine. Although metal additive has come a long way, there are still cases where complex features must be machined post-print. With femtosecond lasers, this task could be done all in one process with one machine. The femtosecond lasers could first additively build a layer, followed by a subtractive ablation of the same layer where tight machining dimensional tolerances are required.

If only Dr. Evil would have known about femtolasers, he may have been more specific in his request!

 

Share this Article


Recent News

3D Printing Webinar and Virtual Event Roundup, August 9, 2020

3D Printing in India: Slow Adoption & What the Future Holds



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

3DP AIPerfecter Offers Part Analysis to 3D Printing Service Bureaus

Service bureaus offer the ability to have prototypes and parts fabricated on professional equipment (especially important as some designers may not have access to any 3D printing resources) and in...

Sponsored

Objectify and 3DPrint.com Partner to Launch Advanced Additive Manufacturing Webinar Series

Under the Objectify AddMics (derived: Additive Academics) initiative—from India’s largest additive manufacturing bureau—Objectify Technologies joins hand with one of the most followed 3D printing media houses in the world, 3DPrint.com,...

3D Printing News Briefs, June 24, 2020: Intech Additive, Titomic, PrintLab, LEHVOSS Group

We’re talking about business, education, and materials in today’s 3D Printing News Briefs. Intech Additive Solutions is introducing a new executive, while Titomic says goodbye to its chairman and hello...

3D Printed Food: Extruding Nutritious, Fiber-Rich Snacks from Composite Flour

Researchers from the Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. of India, Thanjavur, Tamil Nadu, India, have released...


Shop

View our broad assortment of in house and third party products.