Italian Researchers Develop “Plantoid” Robot With 3D Printed Trunk and Root-Like Sensors

Share this Article

Despite the reality of contemporary robotics, humans seem to persist in imagining a future that is at least semi-populated with mechanized, anthropomorphic “beings.” The Sci-Fi genre certainly reflects our greatest aspirations and most abject fears in this respect. From “Metropolis” to “Blade Runner” to “Star Wars,” androids and their antics–whether for the greater good or to our (humans’) potentially collective, violent demise–populate the silver screen, after first having made their debut in literature. The truth is, creating humanoid robots is for the most part unnecessary and even fanciful.

That doesn’t mean that the vast and diverse robotics industry isn’t interested in developing robots that in one way or another possess lifelike attributes and, more importantly, capabilities. The FP7-Plantoid Project is one such example. Researcher Barbara Mazzolai of the Instituto Italiano di Tecnologia (IIT), is the coordinator of a robotics project predicated on the distinctive behavior of another major life form: plants. Funded by Future and Emerging Technologies (FET), a major European Union program to encourage technological research and innovation, the FP7-Plantoid project looks not at animals but at plants for models of adaptability and sustainability.

A Plantoid root sensor.

A Plantoid root sensor.

While we tend to think of plants as generally passive organisms, the project is predicated on the fact that plants not only move but also sense very efficiently. Basically, FP7-Plantoid is developing a plant-like robot that mimics specific plant behaviors or capabilities. The prototype looks something like a tree, with an actual 3D printed trunk from which protrude root-like sensors. One root, explains Mazzolai, “demonstrates bending capabilities.” Like real plants, it basically goes in plantoid1search of fertile ground to extend itself and the larger plant it supports. The robot plant has sensors on the end of its roots that allow it to detect gravity, temperature, humidity, the presence of specific organic materials like nitrate and phosphate, and touch.

Why touch? If a root runs into an obstacle, then it is redirected, probably for obvious reasons. One aspect of FP7-Plantoid is to program the robot to recognize obstacles such as physical barriers but also toxic or aggressive products. Another component of the project is to provide the “plantoid” with impetus to grow in a certain direction by providing it with material conducive to growth in a particular area in reasonable proximity to the root-sensor.

The roots are connected to a micro-computer that is housed in the 3D printed trunk. Also connected are appendages that approximate the activity of leaves. Their sensors look for similar things like obstacles and chemical factors, but they’re programmed to do the above-ground work of the plantoid.

plantoid2

Currently, the project and its prototype are not being designed and programmed to meet any specific goals beyond the basic development of the plantoid. However, project coordinator, Mazzolai suggests that applications for the robot could potentially involve detection of toxic chemicals in the environment, the monitoring and mapping of soil, space exploration in environments that would prove hostile to animal and plant life, endoscopic robots that could perform delicate surgical procedures, post-natural-disaster search and rescue operations, and more.

The three-year FP7-Plantoid operation is expected to conclude in the spring of 2015, so the last phase of the project is generally being devoted to exploring possible future applications for the plantoid. One aspiration of the research team is to consider how the robots can be used to exploit available environmental energy such as solar energy. It seems likely that future prototypes will also rely on 3D printing to varying degrees as prototypes become standardized and more widely produced. Discuss this story in the 3D Printed Plantoid Robot forum thread at 3DPB.com.

Share this Article


Recent News

Daring AM: SpaceX’s 3D Printed Gear Took the Spacewalk Game to New Heights

3D Printing News Briefs, September 15, 2024: Crowdfunding, EVs, Microalgae, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: September 14, 2024

In this week’s roundup, Divide By Zero Technologies is having a launch event for its new 3D printer tomorrow. Stratasys continues its tour of North America, as well as its...

Featured

3DPOD 217: 3D Printing Money with Danny Piper, NewCap Partners

Danny Piper, of NewCap Partners, helps companies with mergers and acquisitions, financial analysis, and more, particularly in the additive manufacturing sector. As an analyst and sparring partner for the industry,...

Featured

Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald

Like sands through the hourglass, so is the Q2 2024 earnings season.  All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...

Protolabs Buys DLP-SLA Combo 3D Printer from Axtra3D

Axtra3D has sold a Lumia X1 to Protolabs, to be installed at the manufacturing service provider’s Raleigh, North Carolina location. The Lumia X1 is a high-throughput vat polymerization system that...