Velo3D

Italian Researchers Develop “Plantoid” Robot With 3D Printed Trunk and Root-Like Sensors

Inkbit

Share this Article

Despite the reality of contemporary robotics, humans seem to persist in imagining a future that is at least semi-populated with mechanized, anthropomorphic “beings.” The Sci-Fi genre certainly reflects our greatest aspirations and most abject fears in this respect. From “Metropolis” to “Blade Runner” to “Star Wars,” androids and their antics–whether for the greater good or to our (humans’) potentially collective, violent demise–populate the silver screen, after first having made their debut in literature. The truth is, creating humanoid robots is for the most part unnecessary and even fanciful.

That doesn’t mean that the vast and diverse robotics industry isn’t interested in developing robots that in one way or another possess lifelike attributes and, more importantly, capabilities. The FP7-Plantoid Project is one such example. Researcher Barbara Mazzolai of the Instituto Italiano di Tecnologia (IIT), is the coordinator of a robotics project predicated on the distinctive behavior of another major life form: plants. Funded by Future and Emerging Technologies (FET), a major European Union program to encourage technological research and innovation, the FP7-Plantoid project looks not at animals but at plants for models of adaptability and sustainability.

A Plantoid root sensor.

A Plantoid root sensor.

While we tend to think of plants as generally passive organisms, the project is predicated on the fact that plants not only move but also sense very efficiently. Basically, FP7-Plantoid is developing a plant-like robot that mimics specific plant behaviors or capabilities. The prototype looks something like a tree, with an actual 3D printed trunk from which protrude root-like sensors. One root, explains Mazzolai, “demonstrates bending capabilities.” Like real plants, it basically goes in plantoid1search of fertile ground to extend itself and the larger plant it supports. The robot plant has sensors on the end of its roots that allow it to detect gravity, temperature, humidity, the presence of specific organic materials like nitrate and phosphate, and touch.

Why touch? If a root runs into an obstacle, then it is redirected, probably for obvious reasons. One aspect of FP7-Plantoid is to program the robot to recognize obstacles such as physical barriers but also toxic or aggressive products. Another component of the project is to provide the “plantoid” with impetus to grow in a certain direction by providing it with material conducive to growth in a particular area in reasonable proximity to the root-sensor.

The roots are connected to a micro-computer that is housed in the 3D printed trunk. Also connected are appendages that approximate the activity of leaves. Their sensors look for similar things like obstacles and chemical factors, but they’re programmed to do the above-ground work of the plantoid.

plantoid2

Currently, the project and its prototype are not being designed and programmed to meet any specific goals beyond the basic development of the plantoid. However, project coordinator, Mazzolai suggests that applications for the robot could potentially involve detection of toxic chemicals in the environment, the monitoring and mapping of soil, space exploration in environments that would prove hostile to animal and plant life, endoscopic robots that could perform delicate surgical procedures, post-natural-disaster search and rescue operations, and more.

The three-year FP7-Plantoid operation is expected to conclude in the spring of 2015, so the last phase of the project is generally being devoted to exploring possible future applications for the plantoid. One aspiration of the research team is to consider how the robots can be used to exploit available environmental energy such as solar energy. It seems likely that future prototypes will also rely on 3D printing to varying degrees as prototypes become standardized and more widely produced. Discuss this story in the 3D Printed Plantoid Robot forum thread at 3DPB.com.

Share this Article


Recent News

3D Printing News Briefs, June 25, 2022: Partnerships, Research, & More

NASA Funds Contour Crafting’s Material Transport Tech for Lunar Construction



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

NASA Funds 3D Printing Research in 2022 SBIR/STTR Awards

Out of 333 proposals that NASA is funding as part of its 2022 Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program, 24 are either creating new...

House 3D Printing, Bacterial Materials, and More Awarded by 3D Pioneers Challenge

The 3D Pioneers Challenge awards the best and most innovative breakthrough projects in 3D printing. This year, the jury selected projects from around the world across several categories, including medtech,...

200 3D Printed Houses Planned by Alquist 3D and Black Buffalo

Alquist 3D is a Virginia-based additive construction (AC) company, specializing in printing affordable, cement-based residential homes. Earlier this year, we covered a story about Alquist printing the first owner-occupied residential...

Featured

World’s Largest Concrete 3D Printing Facility Opened by GE Renewable Energy

The more that the renewable energy and additive manufacturing (AM) sectors evolve, the clearer it becomes how much the two industries have to offer one another. So far, this has...