German Researchers 3D Print Thin-Layer Chromatography Plates

RAPID

Share this Article

Gertrud Morlock, researcher at the Justus Liebig University in Giessen, Germany, successfully utilized a Prusa i3 to create patterned plates with 3D printed thin silica gel layers.

The Prusa i3 open-source 3D printer can be customized based on various use cases, as it is commercially supplied in a kit form. Morlock and her colleague Dimitri Fichou replaced the extruder provided in the original Prusa i3 kit with an alternative component that is capable of 3D printing thin silica gel layers. According to Morlock, the customized Prusa i3 3D printer was designed by Fichou specifically to conduct thin-layer chromatography.

By definition, thin-layer chromatography is a method in which compounds are separated on an absorbent material. Usually, the surface material is composed of silica gel that is placed on a glass plate or plastic sheet.

Thin-layer chromatography analysis

Morlock and Fichou conducted thin-layer chromatography on 3D printed plates, thereby relying solely on 3D printing technology to create patterned plates. Thin-layer chromatography on a glass plate is a delicate method or process which requires absolute precision and accuracy. Since thin silica gel can be eroded off the plate or result in an inconsistent surface, Morlock and Fichou developed a special position sensor for the customized Prusa i3 extruder.

The position sensor ensured that the extruder or syringe containing silica gel was always at a fixed distance away from the glass plate. The utilization of the position sensor allowed the team to create 3D printed plates with a flat layer. Morlock and Fichou documented their experiment in a paper entitled “Open-Source-Based 3D Printing of Thin Silica Gel Layers in Planar Chromatography,” which you can access here.

“The optimal parameters for 3D printing of layers were studied, and the planar chromatographic separations on these printed layers were successfully demonstrated with a mixture of dyes,” the researchers state. “The layer printing process was fast. For printing a 0.2 mm layer on a 10 cm × 10 cm format, it took less than 5 min. It was affordable, i.e., the running costs for producing such a plate were less than 0.25 Euro and the investment costs for the modified hardware were 630 Euro.”

The experiment demonstrated the potential of 3D printing technology in 3D printing silica gel with accuracy and precision. Because a small and commercial 3D printer such as Prusa i3 was able to finalize the silica coating in less than five minutes due to its built-in layer heating system, fully built enterprise-grade 3D printers will be able to apply silica coating on plates or glass sheets at a much faster rate, potentially decreasing operating costs and optimizing time efficiency for glass plate and sheet manufacturers.

Morlock and Fichou also 3D printed a plate with 40 channels in it for a cost of $0.4 in less than two minutes.

“All modifications of the device and software were released open-source to encourage reuse and improvements and to stimulate the users to contribute to this technology,” the researchers continue. “By this proof-of-principle, another asset was demonstrated to be integrated into the Office Chromatography concept, in which all relevant steps for online miniaturized planar chromatography are performed by a single device.”

Discuss in the Thin Layer Chromatography forum at 3DPB.com.

[Source: Separations Now]

 

 

Share this Article


Recent News

Origin Shareholders Escalate Legal Battle Against Stratasys Over Earn-Out Payments

Former 3D Systems’ Exec Launches GenesisTissue for Bioprinting



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Stanford’s Dr. Skylar-Scott Breaks Down the Timeline for Fully Bioprinted Organs

Bioprinting has transitioned from an ambitious idea to a field making steady progress toward creating functional tissues and vascularized structures, offering a glimpse into the future of regenerative medicine. Against...

Can 3D Printing with Captured Carbon Help Address Climate Change?

It sounds almost too good to be true, but a recent study published in Nature Communications describes a potentially groundbreaking process where carbon dioxide (CO2) is converted into 3D-printed carbon...

Featured

American Axle & Manufacturing Acquires GKN Powder Metallurgy and GKN Automotive for $1.44B

American Axle & Manufacturing (AAM), a publicly listed supplier of automotive driveline and drivetrain components headquartered in Detroit, has acquired Dowlais Group plc, the parent company of GKN Automotive and...

Stanford’s $250 Bioprinter Makes Bioprinting Accessible to All

Bioprinting has long been praised as a groundbreaking tool for advancing regenerative medicine, drug testing, and tissue engineering. But despite its immense potential, the high cost of bioprinters has kept...