Siemens Engineers Successfully Test New 3D Printed Gas Turbine Blades, Manufactured at Siemens-Owned Materials Solutions

Inkbit

Share this Article

siemens-new-logo-600Back in 2015, German engineering group Siemens formalized a strategic investment package with UK-based Materials Solutions, an additive manufacturing specialist in nickel superalloy components for gas turbines, as well as specialist steel and titanium components for aeronautics systems and motor sports. Siemens recently acquired the company, and also announced in October its new end-to-end solution that’s designed to help companies maximize the use of additive manufacturing for product development.

materials-solutions-logoAnother announcement that was discussed during the company’s recent annual shareholder’s meeting is being hailed as a “major step forward” in using additive manufacturing to make critical, functional components: Siemens engineers successfully tested new 3D printed gas turbine blades, which were manufactured at Materials Solutions.

Joe Kaeser, CEO of Siemens AG

Joe Kaeser, CEO of Siemens AG

In the English translation of the shareholder’s meeting webcast, the CEO of Siemens AG, Joe Kaeser, introduced the small 3D printed turbine.

“It may seem rather insignificant, a small element, but ladies and gentlemen, it’s barely 8 centimers high, but it has to withstand extreme temperatures. It is a blade for a gas turbine, and it’s about the most demanding thing one can print these days.”

Full load engine tests for the additively manufactured power generation gas turbine blades were recently completed at the company’s industrial gas turbine factory. The blades, with a conventional blade design at full engine conditions, were subjected to 13,000 revolutions per minute, at temperatures beyond 1,250°C, and were successfully validated. The blades were installed in a 13MW Siemens SGT-400 industrial gas turbine and were able to hold up under high pressure, extreme temperatures, and high-speed rotational forces, because they were additively manufactured using a powder made from high-performing polycrystalline nickel superalloy. Siemens engineers also tested a new blade design that featured an improved internal cooling geometry, which could only be achieved through 3D printing.

[Image: The Engineer]

[Image: Siemens]

Will Meixner, CEO of the Siemens Power and Gas Division, said, “This is a breakthrough success for the use of additive manufacturing in the power generation field, which is one of the most challenging applications for this technology.”

3d-printed-turbine-blade-siemensThis specific division offers a wide variety of solutions and products to engineering, utilities, and procurement companies, among others, for the reliable transport of oil and gas and efficient energy production. At full load, each one of the new turbine blades was traveling at speeds of over 1,600 km per hour, carrying roughly the weight of a completely loaded London bus, surrounded by gas at 1,250°C and cooled by air at over 400°C. Meixner also stated that this breakthrough will allow Siemens to focus on accelerating new gas turbine designs.

Meixner said, “This new flexibility in manufacturing also allows Siemens to develop closer to the customer’s requirements and also to provide spare parts on demand.”

Siemens said that it was the first company to perform such a “breakthrough” test on blades like this, with full load engine conditions and the proper temperatures and revolutions per minute. According to capital goods analyst James Stettler of Barclays, every single vendor across the supply chain needs to be on their toes, due to how rapidly technology is moving these days. So it’s a good thing that, according to the shareholder’s meeting webcast, Siemens invests $500 million worldwide every year in training their employees on the newest innovations.

siemens-gas-turbinesPrices are under “extreme pressure” for gas-fired power generation turbines, and Siemens revealed last week that new projects were being deferred, and that the company had to “fight for every order.” When asked, a spokesman for Siemens said that the technology reduced the design-to-testing time from two years down to two months, but could not estimate when exactly the 3D printed gas turbine blades would begin commercial production. Discuss in the Siemens forum at 3DPB.com.

[Sources: The Engineer, Reuters]

 

Share this Article


Recent News

Golf Pro Rickie Fowler Swings a Custom 3D Printed Golf Club

Multi-Metal 3D Printing Made Possible with Grid Logic’s Powder Deposition Tech



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

BEAMIT Expands Metal 3D Printing Fleet with GE Additive’s M Line

Already a customer of GE Additive, BEAMIT Group (BEAMIT), partly owned by SANDVIK, has taken on another metal 3D printer from the manufacturing giant. The latest is a Concept Laser M...

Featured

5 Ways Biden’s AM Forward Strategy Will Grow 3D Printing in the US

On May 6, 2022, President Joe Biden paid a visit to United Performance Metals in Hamilton, Ohio, where he announced the launch of a new federal 3D printing program dubbed...

Featured

6K Raises $102M in Series D Round Led by Koch Strategic Platforms

6K has just announced that it has closed the first tranche of its Series D round of financing, for $102 million. In all, the company expects to raise a total...

Sponsored

How Intelligent Automation and Networking of 3D Printing and Post-processing Increase Productivity

The market for Additive Manufacturing (AM) processes continues to grow and will even fivefold by 2030, according to SmarTech Analysis. More and more companies are taking a step towards the...