ORNL Partners With Ingersoll Machine Tools to Develop Colossal 3D Printing System

Share this Article

ornl-logo249x60 (1)When it comes to innovation on the 3D printing front, very few entities have contributed as much groundbreaking research and development as the Tennessee-based Oak Ridge National Laboratory (ORNL) has. Whether it be 3D printing on the nanoscale or large-scale, the government-based national laboratory program is constantly aiming to push this emerging technology to the next level. When they’re not busy creating a simulation guided process for nanoscale 3D printing or licensing their large-scale 3D printing patents to companies like Strangpresse, the ORNL is breaking Guinness World Records for the largest solid 3D printed part.

INGEMILF3CBack in 2014, the ORNL worked with manufacturing company Cincinnati Inc. to create the Big Area Additive Manufacturing Machine (BAAM), an unbelievably large 3D printing system with a build envelope of approximately 6 x 12 x 3 feet. Now, the national laboratory is working on a new additive manufacturing system that will make the BAAM look dwarfish in comparison. The ORNL will collaborate with the Rockford, Illinois-based manufacturer Ingersoll Machine Tools Inc. to develop the Wide and High Additive Manufacturing (WHAM), a mammoth-sized additive manufacturing system that will have a build envelop of 23 x 10 x 46 feet, as well as targeted laydown rates of 1,000 lb/hr.

“Our collaboration with Ingersoll on the development of a 3D printer that provides a volume not possible with current printers could open up new markets and applications in defense, energy and other areas of manufacturing. Ingersoll brings years of experience engineering massive equipment in the composites area, and we look forward to a successful partnership,” said Bill Peter, the director of ORNL’s Manufacturing Demonstration Facility.

WHAM gantry 3a_500

Conceptual design of the WHAM

The project was announced earlier this week by Ingersoll Machine Tools at the Chicago-based International Manufacturing Technology Show (IMTS) 2016. The WHAM system will lead to increased size and speed capabilities over currently existing large-format 3D printing technology, and is projected to be commercially available sometime in the next 18 to 24 months. The WHAM will include high-speed automatic exchange of the printing extruder, as well as a 5-axis milling attachment for conventional subtractive finishing operations. Additionally, the first material that will be used with the large-format 3D printer is already being developed by the Clinton, Tennessee-based plastic material producer Techmer, an ABS with 10% chopped carbon fiber reinforcement.

The partnership is likely to be a fruitful and successful one, as both the ORNL and Ingersoll are among the most innovative in modern manufacturing. According to Ingersoll, they will utilize their experience developing CNC machining systems and automated fiber placement (AFB) machines to create the WHAM system, while the ORNL’s work with the BAAM speaks for itself. The new additive manufacturing system will target the markets of wind energy, aerospace, automotive and defense. The WHAM is an undeniably exciting prospect for the 3D printing industry, which has long been battling to alleviate limitations in build size. Discuss further over in the WHAM 3D Printing System forum at 3DPB.com.

[Source: CompositesWorld]

 

Facebook Comments

Share this Article


Related Articles

3D Platform To Offer New 3D Printing Platforms, Processes, Partners

3D Printing News Briefs: May 16, 2019



Categories

3D Design

3D Printed Architecture

3D Printed Art

3D printed chicken


You May Also Like

ORNL and UMaine Initiative Receives Funding to Create New Bio-Based 3D Printing Materials

The researchers at Oak Ridge National Laboratory (ORNL) in Tennessee have spent a lot of time working with unique 3D printing materials, such as polyester, lignin, and nanocellulose, which is a bio-derived...

GE Research and Project Partners Using Metal 3D Printing to Make a More Efficient Heat Exchanger

Heat exchangers are designed to efficiently transfer heat from one matter to another, and are being increasingly produced through the use of 3D printing these days, as the technology can...

Singapore: Researchers Study Effects of Spatter in Large-Scale SLM Printing

Ahmad Anwar, thesis student at Nanyang Technological University in Singapore, explores undesired byproducts of 3D printing in ‘Large scale selective laser melting : study of the effects and removal of...

Stratasys Unveiling New F120 and V650 Flex 3D Printers…and One is an SLA!

Two years ago, Stratasys introduced its professional F123 3D printer series at SOLIDWORKS World 2017, designed for use in the office and classroom. The series consists of three user-friendly models...


Training


Shop

View our broad assortment of in house and third party products.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!