Qatar University Prepares for 2022 World Cup with 3D Printed Stadium Models

Share this Article

QuEngineeringLogoWe’ve seen, and written about, many cases of architects turning to 3D printing to generate models of planned buildings. The benefits are numerous – 3D printing produces models much faster and more cheaply than traditional handcrafting; changes and revisions can easily be made; and the level of detail that’s possible with 3D printing far surpasses that of which can be created with other methods. Now researchers in Qatar are taking the potential of 3D printed models to new levels.

The College of Engineering at Qatar University is hard at work on several 3D printed scale models of the future stadiums to be built for the 2022 FIFA World Cup, which will be hosted by the country. Beyond assessing the aesthetic and logistical properties of the models themselves, the researchers are also putting them through a series of tests to determine how to best construct the stadiums for optimal cost efficiency and environmental benefit.


Inside the wind tunnel.

It took the researchers seven months to design and construct a wind tunnel – the first of its kind in the region – into which a 1:300 scale model is placed. Once inside, a series of laser beams capture the flow of air over and through the miniaturized stadium, and the measurements gathered are then processed by sophisticated analytics software that tells the researchers everything about the air inside the structure, down to the smallest detail.

“We can see the temperature per tier, add in variants such as sweat produced and amount of spectators, and then run the simulation and see effect of temperature inside stadium,” said Dr. Saud Abdul Aziz Abdu Ghani, a professor at the College of Engineering. “For cooling we want a minimal amount of air to go in, and we want the air inside to stay there. We can change the direction and simulate different wind directions at this facility.”

Thumb (2)

Scale model of Al Bayt Stadium

The team has run the simulations on models of already-existing stadiums as well as those yet to be built. A total of nine new stadiums will be built for the World Cup, and three existing ones will be renovated. Qatar’s plan is for the facilities to be climate-controlled with a zero carbon footprint by taking measures such as reducing warm winds and solar radiation, as well as providing soft air conditioning. It’s a big task, to say the least; according to Qatar Travel Online, measures like these have never been implemented on stadiums of this size.

Thumb (1)

The models are printed on a Fortus 400mc from Stratasys.

The stadium models, which take about a week each to print according to Dr. Ghani, are printed in pieces and then assembled before they go into the wind tunnel. So far they have tested two stadiums and a fan zone, and a third model is currently being printed. The researchers are working closely with the Technical Delivery Office at the Supreme Committee for Delivery & Legacy (SC), who will be using the findings to implement engineering changes to the stadiums’ construction.

“We’ve done a lot of work with QU’s team and made aerodynamic changes to our stadiums as a result,” said Yasir Al Jamal, Vice-Chairman of the Technical Delivery Office. “This creates a lot of saving through value engineering. They also look at the roof structure to minimalise the amount of steel, which will reduce energy and capital costs, and reduces the effect on the environment. In effect we are minimising the effect on the environment, as well as the cost and the operational cost.”

The wind tunnel was entirely designed and constructed in Qatar, with the exception of the fan, which was produced in Germany. Other countries are already taking note of the work being done at Qatar University, and some foreign architects have even traveled to the university to use the technology for their own projects. Designers from one of Belgium’s largest football stadiums recently came to test their design aerodynamics, according to Dr. Ghani; their objective was to find ways to reduce the amount of wind-driven rain coming into the stadium.

“I believe this is the future of the stadium design industry,” Dr. Ghani said. “Testing used to be done on clay models, but this technology is now at the forefront of stadium design and is also being used for high-rise buildings in Qatar instead of sending them for aerodynamics testing in Canada or Germany as was previously done. You can print anything from cars to skulls for reconstructive surgery, using different materials including metal, titanium, and aluminium.”

Thumb (3)

He adds:

“I am glad that I started working with the SC, because they are really looking for legacy on their projects and this wind tunnel is already helping to leave one for stadium design of the future across the world.”

How do you see this affecting the stadium industry? Let’s discuss further over in the 3D Printed Stadium Designs forum over at

[Source/Images: Supreme Committee for Delivery and Legacy]

Share this Article

Recent News

Climate Disrupted: Jevons Paradox

3D Printed Haversian Bone: Biomimicking for Cell Regeneration


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

Cartilage Tissue Engineering via Characterization and Application of Carboxymethyl Chitosan-Based Bioink

International researchers continue the trend in exploring natural biomaterials for bioprinting, detailing their findings in the recently published ‘Characterization and Application of Carboxymethyl Chitosan-Based Bioink in Cartilage Tissue Engineering.’ Examining...

Review: Current Efforts in 3D Printed Pharmaceuticals and Drug-Delivery Systems

International researchers continue to explore the potential of patient-specific treatment via 3D printing, releasing their findings regarding pharmaceuticals in the recently published ‘3D Printing of Pharmaceuticals and Drug Delivery Devices.’...

Regemat3D Launches its New Bioreactors for Maturing Tissues

One of Spain’s leading biotech companies, Regemat3D, has been developing custom biofabrication systems and regenerative medicine solutions since 2011 to fulfill unique research requirements and offer customized solutions for patients’...

Louisiana Tech: 3D Printing Halloysite Nanotubes for Improved Methods in Bone Regeneration

Yangyang Luo recently submitted a dissertation, ‘Application of Halloysite Nanotubes in Bone Disease Remediation and Bone Regeneration’ to Louisiana Tech University. Focusing on what can be a very challenging field,...


View our broad assortment of in house and third party products.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our

You have Successfully Subscribed!