Additive Manufacturing Strategies

Researchers from the University of Jerusalem Developed 3D Printable “Smart” Machine Elements

ST Medical Devices

Share this Article

3dp_smartmachine_uni_jerusalem_logoAs our world becomes more connected and the Internet of Things becomes more integral to our daily lives, it isn’t just personal electronics that need to get smarter. There are a growing number of products that have integrated sensors that allow smart devices and smart homes to connect to them, interact with them and even control them. Within a few years it will be commonplace to be able to use a smartphone to check the contents of a home fridge and see what needs to be added to a shopping list without even opening the door. Ovens, and even the food being cooked in them, will be monitored remotely, as will appliances like coffee machines, the washer and dryer, and even the toaster.

All of this interactivity will be entirely dependent on the presence of sensors and compact machine elements that can record and transmit a wide range of data and information quickly and efficiently. Currently conventional manufacturing of these interactive devices often includes components that collect redundant information that measures the same physical functions. This is because both the structure and function of the machine element block are manufactured separately from the structure and function of the sensing block. A new research project at the Hebrew University of Jerusalem is working to develop a new 3D printing manufacturing process that will enable designers to easily create hybrid machine elements and sensors that allow for the development of completely interactive systems.

3D printed hybrid screw and dedicated screwdriver. The colors represent the danger to the structural integrity of the screw.

3D printed hybrid screw and dedicated screwdriver. The colors represent the danger to the structural integrity of the screw.

The researchers developed a process to generate hybrid machine elements that can be used to create a device or product that will both perform a task and collect data about how the task is being performed concurrently. These 3D printed component-sensor hybrids will only record data based on the specific parameters required, and won’t gather redundant or unnecessary data. Using this process to create machine elements will reduce the amount of material used, allow them to be made smaller and virtually eliminate the constraints of traditional design or manufacturing.

Working proofs of concept have been developed by the researchers as individual mechanical components that have fully integrated sensors capable of performing mechanical functions while sensing and reviewing their own performance. An example of the hybrid element in action is a 3D printed screw and a dedicated, 3D printed screwdriver that was designed to monitor the screw while it is being driven in with the screwdriver. The sensors within the screw and screwdriver will record data about its structural integrity while it is being turned and asses the risk of it being damaged or breaking during the process. It can also monitor the efficiency of the tool being used to screw it in, and even record data about the user.

According to market researchers, the smart sensor market is expected to grow to over $10 billion by the year 2020. The 3D printing industry is also growing at an exceptional rate, and will be close to $49 billion by the year 2025. This growth will primarily be seen in the manufacturing and industrial side of the market, and smart sensors are expected to be part of that next generation process. The ability to quickly and inexpensively manufacture products that are capable of connecting and communicating with each other is vital to the further growth of the Internet of Things.

3dp_smartmachine_Yissum_logoThe next step for the research team is to incorporate their hybrid elements into more complex designs and products, like interactive haptic devices. The goal of this stage of the project is to prove that they can be used in a wide variety of viable products with functional and complex interactive systems. According to Yissum, the Hebrew University of Jerusalem’s technology transfer company, they are actively seeking designers looking to develop the next generation of interactive systems. What are your thoughts on these tools? Discuss in the 3D Printed Hybrid Elements forum over at 3DPB.com.

Share this Article


Recent News

3DPOD Episode 93: Bound Metal 3D Printing with Mantle CEO Ted Sorom

Eco-Friendly 3D Printing: Sustainable Luxury Handbags Enabled with AM



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: January 16, 2022

We’re back in business this week with plenty of webinars and events, both virtual and in-person, starting with the second edition of the all-female-speaker TIPE 3D Printing conference. There are...

3D Printing News Briefs, January 12, 2022: Rebranding, Bioprinting, & More

First up in today’s 3D Printing News Briefs, Particle3D has gone through a rebrand, and a team of researchers developed a way to 3D print and preserve tissues in below-freezing...

3D Printing News Briefs, January 5, 2022: Software, Research, & More

We’re kicking off today’s 3D Printing News Briefs with 3D software, as Materialise has integrated Siemens’ Parasolid with its own Magics software. Moving on, The Virtual Foundry launched a metal...

3D Printing News Briefs, January 1st, 2022: CES 2022, Standards, Business, & More

Happy New Year! We’re starting with this week’s CES 2022 in today’s 3D Printing News Briefs, then moving on to a new AM standard and business news from Roboze and...


Shop

View our broad assortment of in house and third party products.