AMS 2025

Researchers from the University of Jerusalem Developed 3D Printable “Smart” Machine Elements

AM Research Military

Share this Article

3dp_smartmachine_uni_jerusalem_logoAs our world becomes more connected and the Internet of Things becomes more integral to our daily lives, it isn’t just personal electronics that need to get smarter. There are a growing number of products that have integrated sensors that allow smart devices and smart homes to connect to them, interact with them and even control them. Within a few years it will be commonplace to be able to use a smartphone to check the contents of a home fridge and see what needs to be added to a shopping list without even opening the door. Ovens, and even the food being cooked in them, will be monitored remotely, as will appliances like coffee machines, the washer and dryer, and even the toaster.

All of this interactivity will be entirely dependent on the presence of sensors and compact machine elements that can record and transmit a wide range of data and information quickly and efficiently. Currently conventional manufacturing of these interactive devices often includes components that collect redundant information that measures the same physical functions. This is because both the structure and function of the machine element block are manufactured separately from the structure and function of the sensing block. A new research project at the Hebrew University of Jerusalem is working to develop a new 3D printing manufacturing process that will enable designers to easily create hybrid machine elements and sensors that allow for the development of completely interactive systems.

3D printed hybrid screw and dedicated screwdriver. The colors represent the danger to the structural integrity of the screw.

3D printed hybrid screw and dedicated screwdriver. The colors represent the danger to the structural integrity of the screw.

The researchers developed a process to generate hybrid machine elements that can be used to create a device or product that will both perform a task and collect data about how the task is being performed concurrently. These 3D printed component-sensor hybrids will only record data based on the specific parameters required, and won’t gather redundant or unnecessary data. Using this process to create machine elements will reduce the amount of material used, allow them to be made smaller and virtually eliminate the constraints of traditional design or manufacturing.

Working proofs of concept have been developed by the researchers as individual mechanical components that have fully integrated sensors capable of performing mechanical functions while sensing and reviewing their own performance. An example of the hybrid element in action is a 3D printed screw and a dedicated, 3D printed screwdriver that was designed to monitor the screw while it is being driven in with the screwdriver. The sensors within the screw and screwdriver will record data about its structural integrity while it is being turned and asses the risk of it being damaged or breaking during the process. It can also monitor the efficiency of the tool being used to screw it in, and even record data about the user.

According to market researchers, the smart sensor market is expected to grow to over $10 billion by the year 2020. The 3D printing industry is also growing at an exceptional rate, and will be close to $49 billion by the year 2025. This growth will primarily be seen in the manufacturing and industrial side of the market, and smart sensors are expected to be part of that next generation process. The ability to quickly and inexpensively manufacture products that are capable of connecting and communicating with each other is vital to the further growth of the Internet of Things.

3dp_smartmachine_Yissum_logoThe next step for the research team is to incorporate their hybrid elements into more complex designs and products, like interactive haptic devices. The goal of this stage of the project is to prove that they can be used in a wide variety of viable products with functional and complex interactive systems. According to Yissum, the Hebrew University of Jerusalem’s technology transfer company, they are actively seeking designers looking to develop the next generation of interactive systems. What are your thoughts on these tools? Discuss in the 3D Printed Hybrid Elements forum over at 3DPB.com.

Share this Article


Recent News

Update: Velo3D Enters Forbearance Agreement as Debt Challenges Intensify

Flexibility Is the Bottom Line: Touring the Visitech Americas DLP Light Engine Factory



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Metal 3D Printing Supplier Continuum Powders Opens North America’s “Largest” Site for Sustainable Metal Powder Production

Continuum Powders, a supplier of metal powders made from recycled materials and used for additive manufacturing (AM), has announced the opening of its new global headquarters, in Houston, Texas. The...

3D Printing Webinar and Event Roundup: December 1, 2024

We’ve got several webinars this first week of December, plus events all around the world, from Chicago, Los Angeles, and Austin, Texas to the UK, Barcelona and beyond. Plus, there...

Lockheed Martin Adds 16,000 Square Feet of 3D Printing to Texas Facility

Defense giant Lockheed Martin has unveiled a substantial increase in its additive manufacturing (AM) capabilities with an expansion of its facility in Grand Prairie, Texas. The addition includes some 16,000...

MatterHackers Expands Portfolio to DED 3D Printing via Meltio’s Metal 3D Printers

Southern California-based MatterHackers, the largest 3D printing retailer in the U.S., has announced a strategic partnership with Spanish metal 3D printing company Meltio in order to increase growth in the...