Additive Manufacturing Strategies

Graduate Students 3D Print Exhibit Highlighting Climate Changes Effect on Vulnerable Ocean-Based Organisms

HP

Share this Article

Department of Geosciences PSUWe all know of the societal impact that 3D printing technology has had on various fields, from prototyping to medical research, but one vital application that is generally swept under the sea—so to speak—is its ability to aid in our current pollution crisis. Over the last month alone, we’ve reported on a couple of instances where 3D printing has been utilized to help fight the man-made rise in pollution. There was the 3D printed skimmer created by Chinese researchers to clean up oil spills, as well as research by the American University that used a mixture of 3D printing and chemistry to remove pollutants from the air and water.

The “Ocean Acidification and its Effect on Marine Life" exhibit

The “Ocean Acidification and its Effect on Marine Life” exhibit at the EMS Museum & Art Gallery [Image: Kristen McAuley / Penn State]

Now, a group of geosciences graduate students from Penn State University have but together a project that uses CT scanning and 3D printing to showcase how increased carbon dioxide in our atmosphere can impact microscopic creatures at the base of the food chain in the ocean. It’s an effect that is rarely discussed in the midst of other glaring climate change effects, but the steady rise of atmospheric carbon dioxide essentially increases acidity in the ocean, which in turn decreases the concentration of carbonates that a number of microscopic creatures utilize for their shells. The exhibit, which is called “Ocean Acidification and its Effect on Marine Life”, is currently on display at Penn State’s College of Earth and Mineral Sciences’ (EMS) Museum & Art Gallery.

ocean-acidification-3_0

The 3D printed display of microorganisms [Image: Kristen McAuley / Penn State]

In order to better inform people on the vulnerability of these vital, yet microscopic oceanic creatures, the research group, led by geosciences graduate students Rosie Oakes and Nick Holschuh, first turned to computerized tomography (CT) scanning, which was assisted by the GE Technology Solutions Center in Lewistown, Pennsylvania. Although these CT scans provided the research group with adequate data on the microscopic ocean creatures, the team realized that 3D printed exhibit would help teach others about the relatively unknown effect that climate change is having on this essential ocean-based food source.

“I use CT scanning for my research, which gives us an amazing three dimensional data set of these microscopic shells, which is a neat technique. But we realized that we could do a 3D printing as well to magnify the effects of ocean acidification,” said Oakes.

Using the 3D printing technology provided by Penn State’s Maker Commons, the team created a set of 6-inch reconstructions of three different oceanic microscopic organisms, which includes pteropods, coccolithophores, and foraminifera. These sets were showcased in both a neutral pH environment and a projected future environment, which magnifies the grave effects that climate change will potentially have on these creatures. Each CT scanned organism was scaled up from hundreds to thousands of times its actual size, which allowed visitors to see the deterioration of this fragile habitat with their own eyes.

Before the research project was unveiled on May 2, the students’ concept was originally refined through a seminar course taught in Fall 2015 by the EMS Museum & Art Gallery’s Russell Graham, Julianne Snider, and John Simmons. In addition to Oakes and Holschuh, others graduate students involved with the exhibit include Claire Cleveland, Garett Brown, Kim Foecke, Ashley Grey, Heather Jones, and Judi Sclafani.

ocean-acidification-6

Informative video content to supplement the exhibit.

Complementing the 3D printed reconstructions at the exhibit is a video on Penn State’s research on ocean acidification, as well as supplementary videos on how these microorganisms function and contribute to their ecosystem. The exhibit also includes a touch component, pioneered by the fellow graduate student Cleveland, which will allow visitors to actually feel the size of these microscopic creatures. With the “Ocean Acidification and its Effect on Marine Life” exhibit, these graduate students hope to amplify a major issue that may soon wipe out a vulnerable, yet vital ecosystem, and inform us all about another great threat we are facing due to climate change. Let’s discuss this topic further in the 3D Printed Oceanic Reconstruction forum over at 3DPB.com.

[Source: Penn State University]

Share this Article


Recent News

3D Printing Webinar and Event Roundup: December 5, 2021

3D Printing News Briefs, December 4, 2021: Formnext USA, Scale Models, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Trade Show Best Practices: How Best to Connect

In a recent series of Formnext articles, I wrote that there were a number of practical tips and observations concerning trade show stands which people were very positive about. Because...

Featured

Craft Health’s Pharma 3D Printer Powered by ViscoTec’s Print Head

Personalized medicine is one of the most exciting verticals in the 3D printing industry, especially since the technology can seriously impact customized drug development and targeted therapeutics. Ever since the...

TRUMPF & Aconity3D Partner with Equispheres for Metal Powder 3D Printing

Ontario-based materials engineering firm Equispheres brought in a good amount of investment funding in 2020 to help scale production of its metal 3D printing powder, which it creates using a patent-pending...

3D Printing Webinar and Event Roundup: November 28, 2021

AM industry events and webinars are back with a vengeance this week as we move into the busy holiday season and this week’s roundup. Topics include everything from standards in...


Shop

View our broad assortment of in house and third party products.