Exone end to end binder jetting service

Sand Your Way to Smoother 3D Printed Parts by Following These Easy Steps

INTAMSYS industrial 3d printing

Share this Article

rumy

The completed, polished, printed Rumy

When we speak about 3D printing, we spend much time on the design, modeling, and printing of our objects. But let’s not forget that in order to optimize your print job there’s also the prerequisite finishing of the print. This is no small part of an overall successful print. 3D printed objects are notorious for having stringy surfaces after printing, and fortunately there’s an easy way to handle this problem: sanding. Here’s an account of Arif Iftakher and Thomas Stillwell’s experience finishing a portable sensor controller for smart thermostats (Rumy). There are lessons here for everyone who wants to improve their overall print quality by finishing their prints in a more satisfactory manner.

Iftakher reports that a 1st generation Flashforge Creator he bought off Craigslist was not up for giving him the best print quality money can buy, so he decided that finishing the print well could compensate for any limits in the print job. It took him two hours and $25 (for sandpaper and polishing compound) to finish both of Rumy’s parts, but the results were worth it. All of Rumy’s parts were “sandable” since there were no creases or small angles requiring acetone, so the job was clean and safe.

Original Print

Original Print

Step One in this process is to begin with a good print. Iftakher gives a few tips here, including using a color of filament close to your print’s desired color to avoid heavy painting later. (The blue filament photos here are for the article, but the original Rumy was printed in black requiring no painting later.) Also, for the highest resolution you want to use the smallest layer height (0.1 mm or less) possible, especially on the first layer. Other tips include: start with the face plate upside down (for best surface finish); for ABS prints, clean the surface of your print bed with Kapton tape and (optional) IPA; always use a slower speed when you can; and print at 100% infill since sanding removes some of the print’s material.

When it comes to sanding your print, Iftakher recommends using about six gradually increasing grades of sandpaper (such as 100, 240, 400, 600, 1500, and 2000) and begin sanding your print with the larger grade paper to remove bumps and scratches. You can wash the print off several times and inspect it for missed scratches; if you miss these you may have to start over again.

Iftakher describes the sanding process as he moved from larger to smaller grit sandpaper:

“Initially the surface looked ashed. However once we started using paper with grit 600 and higher, the surface started to be cleaner and smooth. It was somewhat shiny with the 1500 grade sand paper. If done right, there will be no stringy texture (striations) on the surface at this point.”

Grit 2000

Grit 2000

You can see the difference in photos here. If you’ve achieved a level of smoothness that the Grit 2000 photo depicts, you may feel that your finishing work is done. Not quite. Do you want it to be a different color than the original filament? Well, then you have to paint your print, too. Iftakher recommends sanding with a minimal grit of 240 before you paint. Spray cans work great for this, providing you use proper priming and painting techniques, which can be found here.

Polishing is the last step in this finishing process, and you can do this simply by using a plastic finishing compound that will give your print a nice shine at the end. These steps should help you go from acceptable to spectacular when it comes to getting the most out of your 3D print jobs. Happy sanding!  Discuss this technique in the Sanding 3D Printed Parts forum on 3DPB.com.

Share this Article


Recent News

INTAMSYS at RAPID + TCT 2021: Intelligent Systems for 3D Printing Functional Materials

US Army to Explore 3D Printed Helmets with General Lattice



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, September 21, 2021: 3D Printed COVID Test, Meatless Burgers, & More

In today’s 3D Printing News Briefs, some new 3D printed industry technology is being tested at Curtin Malaysia, and three partners are working to make vehicles more lightweight. Researchers have...

3D Printed Chain Mail Flexes and Stiffens on Demand

Nanyang Technological University, Singapore (NTU Singapore) and California Institute of Technology (Caltech) researchers have created a polyamide chain mail which is flexible but can harden when needed. Made out of...

3D Pioneers Challenge Winners Range from 3D Printed Helmets to Bioprinted Meat

The winners of the 3D Pioneers Challenge have just been announced. The First Prizer winner of one of 3D printing’s most prestigious awards was the 3D printed helmet from HEXR,...

Auto-Fit Software Will Tailor 3D Printed Helmet Liners to Hockey Players

Last fall, Canadian hockey equipment designer, manufacturer, and marketer CCM introduced its ‘SuperTacks X with Nest Tech’ helmet, which features a 3D printed interior made with Carbon’s DLS technology and...


Shop

View our broad assortment of in house and third party products.