Welsh Researchers 3D Print Cartilage; Full Ear and Nose Transplants May Be Only 3 Years Away

Share this Article

ear3D printing has thoroughly overhauled the prosthetics industry. We write about 3D printed prosthetic devices all the time, as they become cheaper, more functional, more attractive and overall better. What if, however, prosthetics suddenly became obsolete? It’s not likely to happen anytime soon, but the seemingly impossible – regrowing an entire missing body part – may be possible in as little as three years, according to researchers at Morriston Hospital in Swansea, Wales.

 “In simple terms, we’re trying to grow new tissue using human cells,” said Professor Iain Whitaker, consultant plastic surgeon at the hospital’s Welsh Centre for Burns and Plastic Surgery. “We want to try and help people who were born with defects, or who have lost parts of their ear or nose as a result of trauma or cancer. We are using human cells, growing them up, to combine them with a printable material, 3D print them and implant them into the human body.”

swansea

(L to R) Professor Iain Whitaker; Zita Jessop, Jasper Sison and Dr Daniel Thomas (South Wales Evening Post)

Whitaker also serves as the chairman of plastic and reconstructive surgery at Swansea University, which has made some major strides in 3D bioprinting this year, including the development of bioprinted tissue for the purpose of pharmaceutical research and, only a few months later, a bioprinted tissue scaffold. The work being developed at Morriston Hospital is another step towards 3D printing entire body parts out of human cells.

The process would involve taking a small sample of cartilage from a patient and placing it into an incubator, where the cells will grow and multiply over the course of several weeks, until they are ready to be combined with a liquid formula that will create a jelly-like structure. That jelly-like material is then used to 3D print the missing body part, such as an ear or nose, using scans taken from the patient. The printed part is then strengthened with reagents and placed back into the incubator, where it is given nutrients that will enable the cells to grow and form their own cartilage.

_87358465_capture

“This work is at the relatively early stages of development and requires combining many areas of expertise; but we already have proof of concept that human cells can survive within the printable structures we’ve made so far, and will survive the printing process,” said Whitaker. “We’re currently working on growing up large numbers of cells in order to print larger constructs, and undertake a number of tests to ensure it will be stable enough to be used to implant into a patient.”

The process will need to be tested on animals before human patients can be involved, and an ethics review will be required, but the team hopes to be able to start clinical trials in as little as 3 or 4 years. The prosthetics industry can relax, as the process is being developed for cartilage-based parts, mainly facial features, that cannot be replaced by prosthetic devices. As Whitaker said, however, this is only the first step, and once the process is finalized and approved, things will likely move very quickly.

_87296086_cartilage

“The good news in the future is, if our research is successful, within two months you’d be able to recreate a body part which was not there without having to resort to taking it from another part of the body which would cause another defect or scar elsewhere,” Whitaker added.

Imagine losing your nose in a terrible accident, and, within two months, having it replaced with your own tissue. Disfiguring injuries will no longer carry sentences of lifetime, or even year-long, embarrassment. I read every day about the myriad ways in which 3D printing is changing medicine, but when I hear about permanent, irreversible, and traumatic conditions being reduced to temporary setbacks, it still gives me the chills.  Let’s hear your thoughts on this story in the 3D Printed Cartilage forum on 3DPB.com.

Share this Article


Recent News

Carnegie Mellon: Optimizing Soft Materials 3D Printing With Machine Learning

Make All the Things Part 3: Vertical Garden Part 2 – User Research



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Make All the Things Part 3: Vertical Garden Part 3 – Design Thinking

This is a short excerpt on our current stage of this vertical farm project in terms of user research. It is requiring us to put on a design oriented thought process.

3D Printing & Digital Fabrication to Play a Significant Role in World Sustainability

While sustainability for the future is a fascinating subject, it is also a critical one as we must do our best to help those currently in need in developing countries,...

The Promise of 3D Printing Sustainable Society & Development

Italian researchers from the University of Chieti-Pescara are exploring the ongoing pervasiveness of 3D printing and additive manufacturing and what that really means for the future in ‘Investigation of the...

Brazil: Researchers Test the Potential of Recycling PLA for Greater Sustainability in 3D Printing

Brazilian researchers are interested in furthering not only the benefits of 3D printing but also the advantages of PLA’s biodegradability for ease in recycling. Their findings are further outlined in...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!