“It’s not rocket science.” How many times have you heard that phrase uttered? It’s generally said disparagingly, to slight someone who is failing to grasp something simple. At Australia’s Gungahlin College, a lot of the coursework is, in fact, rocket science.
The school, which prides itself on training its students in the most up-to-date technology, offers a course in mechatronics, a relatively new discipline that is essentially an engineering catch-all, combining mechanical, electrical, computer and software engineering. Gunghalin is one of the few schools in Australia to be equipped with a mechatronics lab, which includes a 3D printer, a laser cutter and CNC router. Recently, the students in year 11 of the discipline, along with year 12 students from the information technology course, took full advantage of the lab’s technology to attempt that most ambitious of scientific endeavors: building and launching a rocket.
The rocket is actually a prototype, just one step in the students’ larger goal, which is to launch a high-altitude air balloon next year. A private sponsorship is enabling the project, and the students hope to send the balloon up to a height of about 35,000 meters from a launch site in New South Wales next April.
“It’s an achievable project with a range of challenges,” said mechatronics teacher Conan O’Brien.
Some of those challenges have already been tackled in the prototyping stage. The students have built and tested a number of prototypes, the latest being a small cardboard and plastic rocket, constructed partially from 3D printed parts. Student Davide Figuendio designed the rocket’s nose cone and engine block using 3D printing, and was pleased with how efficient the process was.
“It takes about an hour to design the pieces and two hours to print them,” he said. “So if anything goes wrong we can always print a new piece on demand, if it’s necessary.”
Challenges were presented with the rocket’s complex systems of electronics, which included temperature and humidity sensors, an accelerometer, magnetometer, altimeter and a GPS. Because the components were all from different manufacturers, they were a bit difficult to integrate into a working circuit board. To circumvent the issue in the future, the students are currently working on designing a custom circuit board, one that will integrate all needed components.
Issues aside, the students successfully launched the rocket last week. The prototype was fired to a height of about 130 meters, with a satisfyingly straight flight path. A parachute brought the rocket down about 40 meters from where it was launched. Despite the challenges the students had encountered, it appeared that their design was successful. Unfortunately, one more issue arose: the memory card never captured the data it had been designed to record, a problem that the students are working on solving before another test launch next week.
The launch button was pushed by the only female student in the mechatronics class. Madeleine Mackey believes that not enough women are pursuing careers in the sciences, and she hopes to encourage other female students to study science despite lingering stereotypes.
“It’s not really the gender that really matters in this class, it’s … the enthusiasm and passion for rocket science,” Mackey said. “I think there’s just this stereotype you know that girls aren’t really good at IT and sciences and that kind of thing.”
Such stereotypes are, of course, nonsense, and hopefully more female students will follow Mackey’s lead in pursuing degrees in science and engineering. With technology expanding so quickly, there will be a lot of space to fill in the science and technology fields, and women and men should be equally encouraged to fill that space. It’s not rocket science, after all.
[Source/Images: ABC Canberra]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing News Unpeeled: ORNL To Make 46 Tonne 410 Steel Additive Part
EOS is to make its M 290 in Pflugerville, Texas as well as in the US starting in Q1 2025. This is in response to a successful US government policy...
EOS Expands U.S. Production with EOS M 290 Metal 3D Printer
German powder bed fusion (PBF) leader EOS has unveiled plans to expand its assembly of the popular EOS M 290 metal 3D printer at its Pflugerville, Texas facility, near Austin....
3DPOD 216: Glynn Fletcher, EOS North America President
Glynn Fletcher is the President of EOS North America. Transitioning from the machine tool world to 3D printing has given him a unique perspective compared to many others in our...
3D Printing Webinar and Event Roundup: August 31, 2024
For the last webinar and event roundup of the summer, we have a variety of in-person and virtual options for you this week! There will be a Markforged FX20 demonstration...