Organovo is one of the most fascinating companies that we follow–and quite continually–as the dynamic company has kept the momentum rolling with one scientific breakthrough after another.
Famous for the design and creation of functional human tissues for medical applications, we’ve recently also been following Organovo and other partnerships in researching human tissue as well as offering the first 3D bioprinted liver product.
It’s just been recently announced that Uniquest signed a worldwide licensing agreement with Organovo to patent kidney cells from induced pluripotent stem cells (iPSCs). Professor Melissa Little and her team at Uniquest have actually been able to grow kidney tissue which should prove to be helpful in not only drug screening but also disease modeling and cell therapy.
Research, in the paper ‘Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis’ published recently in Nature, discusses the method by which Little and her team have been able to grow cell types basically by generating kidney cells containing nephrons. In identifying a way to collect the proper materials, they were indeed able to generate true kidney organoids.
“When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney,” stated the researchers in their paper. “Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy.”
Together the teams will be working to develop the science, research, and development further of the kidney tissue.
“The mini-kidney we have been able to grow is very complex and more like the real organ,” Professor Little said. “This is important for drug testing as we hope these mini-kidneys will respond to the drugs as a normal organ might.”
While the mini-kidney is a huge step, it’s important to note that with the recent research, they have gone much further with developing kidney tissue. Organovo figures clearly into the picture as they will be using their famed bioprinting technology to separately develop a ‘kidney proximal tubule tissue’ that they project being released in 2016.
“We are excited to license this groundbreaking technology to enable the development of human kidney tissues that could change the landscape of drug testing and kidney research. Working with leading scientists such as Professor Little extends our leadership position in the generation and commercialization of tissues that better recreate in vivo human biology,” said Organovo’s Chief Technology Officer, Sharon Presnell, Ph.D.
Organovo will also continue to work with Professor Little in developing the intellectual property in extremely valuable and commercial applications for the kidney tissue, such as:
- Kidney disease modeling
- Nephrotoxicity screening
- Examining compounds to improve function in patients with renal disease
While Organovo will be launching their tissue product next year, it is expected that Uniquest’s licensed technology would be launched sometime after that.
“This deal is anchored in world-leading induced pluripotent stem cell research by Professor Melissa Little and follows a research collaboration between The University of Queensland and Organovo, facilitated by UniQuest.,” said UniQuest CEO Dr. Dean Moss. “We are delighted to work with Organovo so that they can further develop and commercialise the technology to accelerate the drug discovery process and enable treatments to be developed faster and at lower cost.”
This partnership is certainly one we’ll be following as Organovo will be granted development and commercialization rights for applications regarding in vitro while Uniquest will be receiving ‘technology access fees’ and royalty payments.
The paper ‘Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis‘ was authored by Minoru Takasato, Pei X. Er, Han S. Chiu, Barbara Maier, Gregory J. Baillie, Charles Ferguson, Robert G. Parton, Ernst J. Wolvetang, Matthias S. Roost, Susana M. Chuva de Sousa Lopes, and Melissa H. Little.
Let’s hear your thoughts on this partnership and what it may mean within the bioprinting space. Discuss in the Organovo / Uniquest forum thread on 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Rebuilding the Industrial Base: Government and National Clusters
The demand to scale and commercialize advanced manufacturing technology, particularly additive manufacturing (AM), is increasing. Exploring government and national clusters is imperative to rebuild the industrial base. As the industry...
New AM Projects Get $2.1M Push from America Makes
America Makes has awarded $2.1 million to six new projects to tackle some of the biggest challenges in additive manufacturing (AM). The funding, provided by the U.S. Department of Defense...
The Stakeholders’ Conference: Additive Manufacturing Strategies
The additive manufacturing (AM) industry has always been one that’s prone to sudden, drastic changes, and clearly, this is as true now as ever. With that in mind, one of...
3D Printing News Briefs, November 23, 2024: Formnext Awards, Batch Production, & More
We’re covering a variety of stories in today’s 3D Printing News Briefs, from the Formnext Awards to metal additive manufacturing for batch production and more. Read on for all the...