‘Dog Bone’ Shaped 3D Printed Polymers Used To Measure Force

Share this Article

Researchers have used 3D printing to create force sensors they say they couldn’t build with any other existing technology. The polymer structures change color when stretched, and the more they’re distorted, the more the color changes.

These tools, shaped like a dog bone, are made from commercially-available polycaprolactone and include an inner strip of spiropyran polymer. When the research team yanked on one end of the sensor, it was permanently deformed and the strip inside turned purple.

polymer 3d printed force sensors

The “bones” were made to record the maximum amount of force applied to the material by embedding four squares of spiropyran polymer, and by taking into account the length of the devices – and the amount of force applied – researchers found they could match the applied force to an observed change in the color of the strips. As they experimented with various combinations of materials and applied force, they say they could quickly correlate the force by simply counting the number of purple squares which appeared.

Called photo and mechanochromic 3D printed structures, the team used a fused filament fabrication printer to print ‘single and multicomponent tensile strength testing pieces.’  They say it would be difficult “if not impossible” to make the sensors using traditional manufacturing techniques which might degrade the spiropyran units or polymer chains. Since such functional polymers can change their shape or chemical composition when subjected to outside factors like light, heat, and mechanical force, they might prove ideal as sensors or for use in drug delivery systems.

But the researchers say common manufacturing techniques which involve light or heat can trigger the functional aspects of the materials prematurely, posing a significant problem.

andrew boydston

Andrew Boydston

In the past, researchers used molds to shape the functional polymers, but the process ultimately limits them in regard to the shape and complexity of structures they can create. So team lead Andrew J. Boydston of the University of Washington used 3D printing to create the necessary shapes.

To begin the work, the team developed a mechanosensitive polymer which could withstand being extruded by a commercial 3D printer – without changing color or being damaged – by the heat of the printing process.  They then synthesized polycaprolactone polymers which contained 50% spiropyran, and when mechanical force is applied to spiropyran, it can isomerize to make a purple merocyanine.

am-2014-06745m_0012

Boydston says that, while a 3D printer can make the devices quickly and accurately, such constructs – which include squares of one polymer embedded inside another material – would be next to impossible to create inside molds.

What methods do you see scientists using to create devices which would be impossible to make with common manufacturing techniques and what applications do you see for 3D printing in the sciences going forward. Weigh in with your take and comment in the Shaped 3D Printed Polymers forum thread on 3DPB.com.

Share this Article


Recent News

polySpectra Launches Kickstarter for Industrial-grade Desktop 3D Printing Resin

Fraunhofer and 3d4MEC Develop Monitoring for Brass 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Tekna Introduces Coarse Titanium Powders for Faster 3D Printing

Tekna is introducing coarse Ti-64 titanium powders to the market, aimed at laser powder bed fusion (LPBF) users. These larger powders could make a significant difference. Designed for 60 μm...

QIDI Q1 Pro 3D Printer Review: A Heated Value

Disclosure: The Q1 PRO was provided to me by QIDI free of charge for the purpose of this review. I have not received any other compensation. All opinions expressed are...

3D Printing News Briefs, September 21, 2024: Process Monitoring, Earmolds, & More

We’re taking care of business first in today’s 3D Printing News Briefs, as Sevaan Group has launched an additive manufacturing service and Farsoon Europe is partnering with MostTech to expand...

Divide by Zero Releases $500 Altron 3D Printer with Advanced Features

Indian original equipment manufacturer (OEM) Divide by Zero Technologies has released its latest 3D printer, the Altron. Priced at $500, the machine features spaghetti detection, automatic calibration, nozzle height detection,...