AMS 2024

‘Dog Bone’ Shaped 3D Printed Polymers Used To Measure Force

Electronics
Metal AM Markets
AMR Military

Share this Article

Researchers have used 3D printing to create force sensors they say they couldn’t build with any other existing technology. The polymer structures change color when stretched, and the more they’re distorted, the more the color changes.

These tools, shaped like a dog bone, are made from commercially-available polycaprolactone and include an inner strip of spiropyran polymer. When the research team yanked on one end of the sensor, it was permanently deformed and the strip inside turned purple.

polymer 3d printed force sensors

The “bones” were made to record the maximum amount of force applied to the material by embedding four squares of spiropyran polymer, and by taking into account the length of the devices – and the amount of force applied – researchers found they could match the applied force to an observed change in the color of the strips. As they experimented with various combinations of materials and applied force, they say they could quickly correlate the force by simply counting the number of purple squares which appeared.

Called photo and mechanochromic 3D printed structures, the team used a fused filament fabrication printer to print ‘single and multicomponent tensile strength testing pieces.’  They say it would be difficult “if not impossible” to make the sensors using traditional manufacturing techniques which might degrade the spiropyran units or polymer chains. Since such functional polymers can change their shape or chemical composition when subjected to outside factors like light, heat, and mechanical force, they might prove ideal as sensors or for use in drug delivery systems.

But the researchers say common manufacturing techniques which involve light or heat can trigger the functional aspects of the materials prematurely, posing a significant problem.

andrew boydston

Andrew Boydston

In the past, researchers used molds to shape the functional polymers, but the process ultimately limits them in regard to the shape and complexity of structures they can create. So team lead Andrew J. Boydston of the University of Washington used 3D printing to create the necessary shapes.

To begin the work, the team developed a mechanosensitive polymer which could withstand being extruded by a commercial 3D printer – without changing color or being damaged – by the heat of the printing process.  They then synthesized polycaprolactone polymers which contained 50% spiropyran, and when mechanical force is applied to spiropyran, it can isomerize to make a purple merocyanine.

am-2014-06745m_0012

Boydston says that, while a 3D printer can make the devices quickly and accurately, such constructs – which include squares of one polymer embedded inside another material – would be next to impossible to create inside molds.

What methods do you see scientists using to create devices which would be impossible to make with common manufacturing techniques and what applications do you see for 3D printing in the sciences going forward. Weigh in with your take and comment in the Shaped 3D Printed Polymers forum thread on 3DPB.com.

Share this Article


Recent News

Del Toro’s Pinocchio Achieves Stop-Motion First with Metal 3D Printed Metal Puppets

Immensa Lands $20M Funding Round for 3D Printing Digital Inventory Suite in MENA



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

CORE Offers to Buy 3D Printing Service Fathom Amid Economic Downturn

Fathom Digital Manufacturing Corp. (NYSE: FATH), a player in the on-demand digital manufacturing sector, received a non-binding acquisition proposal from CORE Industrial Partners, a Chicago-based private equity firm that played...

3D Printing News Unpeeled: Iowa Tears Down 3D Printed House, Immensa Gets $20M

The city of Muscatine had an ambitious plan to construct 10 3D printed homes and has now torn down the first one. The Community Foundation of Greater Muscatine (CFGM), Muscatine...

Featured

Automation in 3D Printing Software: Authentise & CASTOR at formnext 2023

AM workflow software provider Authentise attended the recent formnext 2023 in Frankfurt, and I spoke to CEO Andre Wegner at the event about the company’s newest product, an engineering collaboration...

India’s Agnikul Lands $24M in Series B Funding, Fueling Space 3D Printing Innovation

In a significant development for India’s emerging space technology sector, Agnikul Cosmos has raised Rs 2 billion (roughly $24 million) in a Series B funding round. The news comes as...