The flexibility of 3D printing is, quite literally, a key aspect of the research currently being conducted at the Center for Cardiovascular Simulation (CCS) at the University of Texas, Austin. We are constantly marveling at the many applications for this groundbreaking technology, from macro to micro levels, no less. Now, Dr. Michael Sacks’ CCS research group is exploring the use of flexible, 3D printed devices that will aid them in treating a range of treatments for cardiovascular disease, particularly when 3D printing is paired with biomechanical computer modeling.
At this stage, the research team is trying to understand the biomechanical function of the cardiovascular system itself, from “the continuum-cellular and micro-fibrous tissue to the entire organ level.” That means they must first have a clearer understanding of the actual mechanical properties of the organic material they are modeling.
How do various tissues that make up the cardiovascular system function? What are their material properties? Since the 1960s, researchers have been utilizing biaxial testing devices to discern how tissue stretches. To put it simply, they stretch tissue in two different directions and measure the results. Typically, the tissue samples have been 10 x 10 cm square or even larger. However, one of the CCS researchers, John Lesicko, has been conducting biaxial testing on mice, so the tissue samples — and the arteries being tested — are obviously much smaller than those from humans.
Enter CAD and 3D printing. Lisicko and the CCS research team are designing a micro-scale biaxial testing device that can manage much smaller samples — as small as 3 mm x 3 mm square! The device is constructed of 200-micron (one thousandth of a millimeter) diameter stainless steel rods, which stretch the tissue from separate attachment points. The rods cannot touch and must work independently of one another in the sense that they are pulling the cardiovascular tissue in two different directions. The attachment elements required holders set at specific points in the tissue to make the the device work properly.
CCS turned to Potomac, a company that specializes in digital and micro fabrication and uses 3D printing. As the process of developing the miniscule device — the rods and the attachment elements — was ongoing, price was a major concern for the researchers. However, 3D printing and refinement via CAD and in the lab has allowed them to keep costs down in a significant way. The ultimate goal is to create a process of patient-specific modeling using computer modeling and 3D printing for, says CCS, “direct manufacturing of personalized medical devices.”
What do you think about this latest nanotechnology application for 3D printing? Let us know in the CCS Nano 3D Printing forum thread at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
Havaianas Collaborates with Zellerfeld to Launch 3D Printed Flip-Flops
The shoe of the summer is undoubtedly the flip-flop. Easy on, easy off, your feet won’t get sweaty because there’s not much material, and they’re available in a veritable rainbow...
UCLA Researchers Develop 3D Printed Pen that May Help Detect Parkinson’s Disease
Diagnosing Parkinson’s disease is difficult. Often, early symptoms of the progressive neurological condition may be overlooked, or mistaken for signs of aging. Early diagnosis can help save lives and improve...
Printing Money Episode 30: Q1 2025 Public 3D Printing Earnings Review with Troy Jensen, Cantor Fitzgerald
Printing Money is back with Episode 30, and it’s that quarterly time, so we are happy and thankful to welcome back Troy Jensen (Managing Director, Cantor Fitzgerald) to review the...
Heating Up: 3D Systems’ Scott Green Discusses 3D Printing’s Potential in the Data Center Industry
The relentless rise of NVIDIA, the steadily increasing pledges of major private and public investments in national infrastructure projects around the world, and the general cultural obsession with AI have...