Researchers Create Tiny 3D Printed Telemetric Sensors Designed For Cardiac Research

Share this Article

Advanced testing of medical treatments often involves experimentation on small laboratory animals like genetically modified mice.

The work itself helps researchers develop medication and cures for humans illnesses, and that’s created a need for innovative telemetry systems to enable remote, real-time monitoring of various biological processes. Perhaps the most critical applications of these technologies are related to cardiac monitoring.

Researchers have focused on creating wireless, implantable systems with integrated blood pressure sensors and fully implantable cardiovascular pressure monitors which include a stent. But the design of such systems gets dicey when designers are forced to deal with smaller-sized test subjects as opposed to larger patients like human beings. Large external components – with larger power sources – just won’t fit the bill.

IFNow work by Kyle G. Fricke at the University of Western Ontario and done under the direction of Dr. Robert Sobot is focusing on the design of a wireless telemetry system architecture, intended to retrieve blood pressure and volume data that, due to its design and prototyping with 3D printing processes, checks in at a svelte 2.475 cm3 and weights just over 4 grams.

The paper on the subject, “Wireless Telemetry System for Implantable Sensors,” is focused on the development of tiny telemetry systems able to capture, process, and transmit specific biological process information to an end device, either wired or wirelessly.

These sorts of biomedical data collectors can grab information from inside a living body. But the issue of size is important in cardiac research. Scientists study what are called “real-time left ventricular pressure-volume loops” as their main tools to analyze the health of myocardium in animals and humans. The PV loop data is used to quantify cardiac pathology like congestive heart failure.

IFThe work is currently done using a four-electrode catheter system inserted into the subject’s left ventricle. It generates an electric field used for continuously measuring such activity, and those catheters are attached to an external base station which prevents the subject from moving freely in a normal environment.

Implants, on the other hand, create a much more useful measuring environment and could contain all sensor electronics, power and data transmission electronics.

Fricke’s work uses 3D modeling and printing where functionality and miniaturization are crucial to the prototyping of the system, and he says 3D printing processes using biocompatible materials like polycarbonate-ISO and various metals are the technology of choice.

The tiny, biocompatible capsules could be located inside a test animal’s body with the catheter so small it could be placed inside the left ventricle of even the smallest test subjects.

Do you know of any ways 3D printing technology is being used to create medical breakthroughs like these telemetric devices? Let us know your thoughts on medical devices and 3D printing in the 3D Printed Telemetric Sensors thread on 3DPB.com.

Share this Article


Recent News

3D Printing News Briefs: February 28, 2020

Long Beach: The New Site for Relativity Space’s 3D Printed Rockets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Improvements to the BioFabrication Facility on the ISS Thanks to Lithoz

Scientific discoveries and research missions beyond Earth’s surface are quickly moving forward. Advancements in the fields of research, space medicine, life, and physical sciences, are taking advantage of the effects...

The Potential of Urea as a Construction Material on the Moon

In the recently published ‘Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures,’ researchers come together from around the world to examine new and unusual...

Virgin Orbit: 3D Printing For An Out of This World Experience

To date, a total of 565 people have gone to space. But that could change very soon as long-awaited commercial spaceflights might be launching next year. After years of delay,...

NASA Phase II STTR Grant: PADT, KSU and ASU Collaboration on Bio-inspired Structures for NASA

Phoenix Analysis & Design Technologies (PADT) will be collaborating with Arizona State University (ASU) and Kennesaw State University (KSU) in the development of stronger, more lightweight structures for space exploration. Together they have...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!