AMS 2024

The BioElectroCathode Project: The Future of Biofuels, Thanks to an Industrial 3D Printer

Metal AM Markets
AMR Military

Share this Article

BioElectroCathode is an innovative project which aims to develop bioelectrosynthesis processes that can be used to convert carbon dioxide (CO2) into methane (CH4) or ethanol. The two main pillars of the project are the application of 3D printing technology for the production of electrochemical bioreactors and the development of methods to produce the cathodes necessary for the bioelectrosynthesis process. The entire process enables the conversion of CO2 into a biogas-like gas that can be used as fuel. Can 3D printing technology from Omni3D help produce the fuels of the future?

An international, Poland-Cyprus team of scientists in collaboration with Omni3D is working on a technology that in the future may help solve three major problems of today’s energy systems, related to energy storage, grid stability and CO2 emissions.

The BioElectroCathode project aims to innovate the biocatalysis of bioelectrosynthesis processes by:

  • fabricating new cathodes,
  • using 3D printing technology to create a MEBR reactor (3D-Microbial Electrosynthesis Baffle Reactor) capable of converting CO2 into methane (CH4) or ethanol.

What is the BioElectroCathode project about?

In the 3D printed bioreactor, optimal conditions are created for the growth of bacteria, which, stimulated by a small electrical charge flowing through the cathode, convert CO2 into methane or into ethanol.

The 3D print was prepared to provide the best possible fluid flow for the bioelectrosynthesis process with simultaneous separation of the resulting gases:

Cross-sectional view of 3D printed MEBR (3D-Microbial Electrosynthesis Baffle Reactor)

The energy carrier produced in this way can be stored, distributed and used, for example, as fuel in gaseous fuel vehicles or in industrial production processes.

The principle of the microbial electrosynthesis system is shown in the diagram below:

Schematic of the microbial electrosynthesis system in the BioElectroCathode project. [S. Bajracharya, Microbial electrosynthesis of biochemicals: innovations on biocatalysts, electrodes and ion-exchange for CO2 supply, chemicals production and separation, dissertation 2016.]

What techniques were used to print the bioreactors?

One of the biggest challenges during the project was preparing a fully tight 3D print to meet the requirements of the BioElectroCathode project. The goal was also to use tested and readily available thermoplastic materials, which in the future will serve for mass, energy-efficient and stable production of bioreactors by incremental technology.

After many tests, ABS and CF-PA filaments were used for the models, and the printouts are created on a Factory 2.0 NET industrial 3D printer. The shape of the reactor evolved during the project to fully optimize the fluid flow inside the reactor:

3D printing: 5 liter MEBR reactor (3D-Microbial Electrosynthesis Baffle Reactor)

Factory 2.0 NET 3D printer equipped with Omni3D Web Control system allows for remote viewing of the 3D printout via camera and thanks to Omni3D AirCirculation function provides temperature control of the printout on its entire surface. Thanks to these features, work on the BioElectroCathode project was not only much easier, but also more efficient.

“The bioelectrocathode science project has enabled Omni3D to identify a new application that is still unknown under standard industrial conditions. On the one hand, we have expanded our knowledge in the area of joining different polymer materials, tested the effects of pressure and temperature on the degree of bonding of model layers. On the other hand, we were able to provide a solution that I hope will contribute in the future to the improvement of living conditions on Earth.” – comments Pawel Robak, CEO of Omni3D

Bioreactors are designed in such a way that their printing takes place without the use of supports. Thanks to this, as well as using a higher printing layer of 0.3 mm, the production time of bioreactor is significantly shortened. 3D printing allowed for multiple changes and improvements to the design. By changing the design parameters of individual reactor elements such as shape or thickness and degree of filling, the structure of the printed device can be easily manipulated and, consequently, the bioreactor’s operation can be improved.

You can read more about the technology and the project on:

The BioElectroCathode project is carried out in the following partnership:

  1. Pro-Academy Research and Innovation Center (Poland)
  2. OMNI3D Sp. z o.o. (Poland)
  3. Cyprus University of Technology (Cyprus)
  4. ENERES CPM Ltd (Cyprus).

Share this Article

Recent News

Spanish Clothing Company Mango Backs Ziknes 3D Printed Furniture Made with Recycled Materials

CORE Offers to Buy 3D Printing Service Fathom Amid Economic Downturn


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

Metal 3D Printing Company 6K Additive Acquires Global Metal Powders

6K Additive, the Pittsburgh-based manufacturer of metal powders for additive manufacturing (AM), has acquired Global Metal Powders (GMP), a supplier of metal powders based in the Pittsburgh suburb of New...

The Role of Private Equity in 3D Printing Service Consolidation

Amid looming concerns about a shaky economy, rising inflation, and climbing interest rates, private equity (PE) is stepping into the spotlight as a major player in the 3D printing world....


Schaeffler Acquires Multi-Material 3D Printing Division from Desktop Metal

The additive manufacturing (AM) landscape is evolving rapidly, and legacy manufacturers are stepping into the ring. Among them is Schaeffler Special Machinery, the machine construction unit of the Schaeffler Group,...

Fathom Appoints New CEO During Challenging Financial Environment

In a move signaling a strategic shift for the company, Fathom Digital Manufacturing Corp. (NYSE: FATH) announced the appointment of Carey Chen as the new Chief Executive Officer, succeeding Ryan...