Researchers from the Ulsan National Institute of Science and Technology (UNIST) have developed an ink to 3D write microthermoelectric generators. These generators show a promise to be small and customizable enough to fit into wearable electronics, opening up the possibility that they may, one day, replace conventional batteries.
Thermoelectric materials create energy by taking high heat rapidly to a cooler area. This technology has the potential to become a viable and inexpensive source of renewable energy by converting wasted heat into usable power.
Energy-harvesting thermoelectric modules could potentially be integrated into the systems they serve; however, conventional manufacturing practices are complex, costly, and have only been able to produce two dimensional structures, limiting efficiency and widespread potential. UNIST scientists were able to develop an ink formula for the microscale 3D printing of thermoelectric parts. Researchers looked at ink colloidal rheology, that is the size and pattern of charged particles. What they determined was that particles that were smaller and bunched narrower produced a higher viscosity. By controlling surface oxidation, the team could enhance rheological properties.
This led the researchers to develop an ink that printed a generator with tiny, sturdy columns (1.4mm tall, 0.55mm diameter) onto a silicon chip. When the generator was heated from one side and cooled from the other, it produced 479W of power, enough energy for a network of small wireless sensors. The ink is a (Vi,Sb)2(Te,Se)3-based particle material engineered for high viscoelasticitty, without the need for organic binders, and that can be directly written into complex architectures.
“If we use 3D printing technology in the production of thermoelectric materials, we will be able to overcome limits of conventional materials,” said Professor Han Gi Chae of UNIST’s Department of Materials Science and Engineering. “The new technology for providing viscoelastic characteristics to 3D printed materials will be used in various other sectors.”
Such technology could be used anywhere there is rapid generation and cooling of heat, such as wind turbines, factories, or even the human body. The same scientific team tangentially developed 3D printed power-generating tubes that can convert wasted heat from industrial or automotive exhaust systems. They used an extrusion-based process to print a material made of lead (Pb) and tellurium (Te) into tube-like shapes.
Professor Jae Sung of UNIST’s Department of Materials Science and Engineering says, “Through this research, we will be able to effectively convert heat generated by factory chimneys, the most common type of waste heat source, into electricity.”
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
John Kawola on BMF’s Formnext Highlights and What’s Next
Boston Micro Fabrication (BMF) has continued to grow steadily since my last visit to its Boston headquarters. The company, known for its ultra-precise 3D printing technology, showcased new product launches,...
Formnext 2024: Sustainability, Large-Format 3D Printers, & More
The doors have closed on Formnext 2024, but we still have more news to bring you about what was introduced on the show floor this year. WASP had several product...
Nano Dimension Builds Momentum After Q3 Earnings: Julien Lederman Talks Strategy
“We’re building a business grounded in innovation but also ensuring financial sustainability for the long term.” That’s how Julien Lederman, Vice President of Corporate Development at Nano Dimension (Nasdaq: NNDM),...
3D Printing Webinar and Event Roundup: December 1, 2024
We’ve got several webinars this first week of December, plus events all around the world, from Chicago, Los Angeles, and Austin, Texas to the UK, Barcelona and beyond. Plus, there...