Exone end to end binder jetting service

Tiny 3D Printed Generators Could Replace Batteries One Day

INTAMSYS industrial 3d printing

Share this Article

Researchers from the Ulsan National Institute of Science and Technology (UNIST) have developed an ink to 3D write microthermoelectric generators. These generators show a promise to be small and customizable enough to fit into wearable electronics, opening up the possibility that they may, one day, replace conventional batteries.

Thermoelectric materials create energy by taking high heat rapidly to a cooler area. This technology has the potential to become a viable and inexpensive source of renewable energy by converting wasted heat into usable power.

Energy-harvesting thermoelectric modules could potentially be integrated into the systems they serve; however, conventional manufacturing practices are complex, costly, and have only been able to produce two dimensional structures, limiting efficiency and widespread potential. UNIST scientists were able to develop an ink formula for the microscale 3D printing of thermoelectric parts. Researchers looked at ink colloidal rheology, that is the size and pattern of charged particles. What they determined was that particles that were smaller and bunched narrower produced a higher viscosity. By controlling surface oxidation, the team could enhance rheological properties.

This led the researchers to develop an ink that printed a generator with tiny, sturdy columns (1.4mm tall, 0.55mm diameter) onto a silicon chip. When the generator was heated from one side and cooled from the other, it produced 479W of power, enough energy for a network of small wireless sensors.  The ink is a (Vi,Sb)2(Te,Se)3-based particle material engineered for high viscoelasticitty, without the need for organic binders, and that can be directly written into complex architectures.

Schematic for direct ink writing of 3D printed thermoelectric architectures. Image courtesy of Nature Electronics.

“If we use 3D printing technology in the production of thermoelectric materials, we will be able to overcome limits of conventional materials,” said Professor Han Gi Chae of UNIST’s Department of Materials Science and Engineering. “The new technology for providing viscoelastic characteristics to 3D printed materials will be used in various other sectors.”

Such technology could be used anywhere there is rapid generation and cooling of heat, such as wind turbines, factories, or even the human body. The same scientific team tangentially developed 3D printed power-generating tubes that can convert wasted heat from industrial or automotive exhaust systems. They used an extrusion-based process to print a material made of lead (Pb) and tellurium (Te) into tube-like shapes.

Caption: “Figure 1. 3D printing of power-generating TE tube. a) Scheme showing the power-generating TE tube made of the 3D-printed p-type and n-type PbTe tubes at the front view. b) Photograph showing the components for the module assembly. c) Photograph of the fabricated power-generating TE tube chipping unipair of p-type and n-type PbTe legs and schematic model of a power-generating tube chipping ten pairs of TE legs assembled from the fabricated unit module.” Image courtesy of Nature Electronics.

Professor Jae Sung of UNIST’s Department of Materials Science and Engineering says, “Through this research, we will be able to effectively convert heat generated by factory chimneys, the most common type of waste heat source, into electricity.”

Share this Article


Recent News

$51M to Ramp up 6K’s Production of Batteries and 3D Printing Metals

Secret Audit Reveals US Military’s 3D Printing Tech Vulnerable to Cyberattacks



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, September 9, 2021: Events, Materials, & More

In today’s 3D Printing News Briefs, the first Formnext + PM South China finally opens this week. In materials news, a biomedical company introduced what it calls the first purified...

Featured

US Navy Issues $20M to Stratasys to Purchase Large-Format 3D Printers

The U.S. Navy has been steadily increasing its investment into practical 3D printer usage, as opposed to research. The latest comes in the form of a whopping $20 million contract...

3D Printing Webinar and Event Roundup: August 22, 2021

From food 3D printing and GE Additive’s Arcam EBM Spectra L 3D printer to 3D printing and CAD in a post-pandemic world and topology optimization, we’ve got a busy week...

Featured

The Largest 3D Printed Structure in North America: a Military Barracks in Texas

ICON’s latest 3D printed training barracks structure in Texas signals another positive step for the additive construction industry. Described by the company as the largest 3D printed structure in North...


Shop

View our broad assortment of in house and third party products.