While 3D printing offers many users the ability to create and innovate completely new designs and products, such technology can also be put to very good use for filling in the blanks. This can be true in terms of industrial components that may have become obsolete and need to be recreated for vehicles, assault rifles, or vessels, parts of the human body that need to be rebuilt and fitted with implants after severe trauma, or as in this latest research shows—anthropological finds and skeletal remains that need to be reconstructed, whether in law enforcement or scientific settings.
In “Effective approaches to three-dimensional digital reconstruction of fragmented human skeletal remains using laser surface scanning,” authors from India and the UK explore 3D printing for remodeling skeletal parts that may be missing. For this study, they focused on remodeling part of a human cranium and reconstructing a mandible. Historically, forensic anthropologists have used superimposition with photography for identifying missing people—but have experienced challenges in rebuilding due to areas where the bone is lost, and parts of the cranium, for example, may be compromised.
Today, analysis of human remains relies on methods like:
- 3D imaging
- X-rays
- Micro CTs
- Laser scanning
- Structured-light scanning
- 3D photogrammetry
3D digitization has offered clear advantages in many projects over the years, commonly in museum or research settings, allowing for affordable replicas that can be used in scientific exchange, criminal forensics, teaching, museum displays, and more. The benefits to forensic departments continue worldwide, as well as contributing to work performed by other professionals.
The researchers were able to obtain two human craniums from the Gujarat Forensic Sciences University skeletal archives for 3D scanning using a NextEngine 3D Laser Scanner, Geomagic Studio 13 for surface reproduction, and a Flashforge Guider 2 3D printer.
A cranium model was 3D printed with PLA, measuring 280 × 250 × 300 mm.
“A direct articulation was established between zygomatic process of maxilla and temporal bone after reconstruction of zygomatic arch,” stated the researchers. “The results were confluent with that mentioned in literature.”
A human mandible was also obtained via Gujarat Forensic Sciences University. The replica was made with vulcanized silicone and then filled with dental stone. The researchers broke the replica into nine pieces.
The resulting measurements verified that the 3D printed model could be used for “various morphometric analysis.”
Many different projects involving rebuilding of bones rely on scanning of the good side or an intact area and then mirroring the incomplete data. In this study, the incomplete zygomatic arch was created using data from a similar cranium. The researchers concluded that such a model would be suitable for use in court, as well as in forensic anthropology and medicine.
[Source / Images: “Effective approaches to three-dimensional digital reconstruction of fragmented human skeletal remains using laser surface scanning”]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Printing Money Episode 23: Additive Manufacturing Deal Analysis with Alex Kingsbury
Episode 23 is here, and it’s chock-full. Alex Kingsbury, nLIGHT Market Development Manager and, not to mention, co-creator of the Printing Money podcast, re-joins Danny and the result is 60...
5 Stages to True Scale: Make Your Own Fleet of Metal 3D Printers
The additive manufacturing (AM) industry is now approaching true scale, where manufacturing is happening at volume. Critical parts, including millions of implants and thousands of rocket propulsion units, are being...
AML3D and Blue Forge Alliance Enter Manufacturing License Agreement for 3D Printed US Navy Parts
AML3D, the Australian original equipment manufacturer (OEM) of the ARCEMY wire arc additive manufacturing (WAAM) system, has announced a Manufacturing License Agreement (MLA) with Blue Forge Alliance (BFA), a neutral...
Accelerating the Domestic Industrial Base: ATDM Director Holley on Workforce Development for Advanced Manufacturing
At this point, it’s a familiar story: the US faces a critical lack of manufacturing workers in the next decade. Estimates are that, by 2032, the nation’s manufacturing labor pool...