Researchers have certainly been able to make huge strides over the decades, living and working in the 2D paradigm—along with relying on testing and experimenting using basic devices like the petri dish; however, the ability to engineer and 3D print (or bioprint) tissue has expanded resources for scientists exponentially. Now, Tel Aviv University (TAU), via its technology transfer company Ramot, with Bayer Pharmaceuticals to test drugs on 3D-printed heart tissue.
While there is a long list of the advantages in bioprinting, the ability to cut out experimenting on lab animals is definitely a change for the better too.
“In a petri dish, all the cells line up in 2D, and it’s only one type of cell” said Prof. Tal Dvir of TAU, the scientist responsible for developing the world’s first working 3D printed heart. “In contrast, our engineered tissues are 3D printed, and therefore better resemble real heart tissues,” she added.
The agreement between Bayer and TAU states that their collaboration will involve the development and testing of an in vitro cardiotoxicity platform in Dvir’s Laboratory for Tissue Engineering and Regenerative Medicine. This takes drug testing to a new level—and true reality with tissue engineering.

A 3D-printed, small-scaled human heart engineered from the patient’s own materials and cells. (Photo credit: Tel Aviv University)
“Our printed tissues contain cardiac muscle, blood vessels and the extracellular matrix which connects the different cells biochemically, mechanically and electrically. Moving away from petri dishes to 3D printed tissues could significantly improve drug tests, saving precious time and money with the hope of producing safer and more effective medication,” said Dvir.
“Our end goal is to engineer whole human hearts, including all the different chambers, valves, arteries and veins – the best analogue of this complex organ – for an even better toxicological screening process.”
This new research is, in fact, an extension of previous work using 3D-printed cardiac patches to regenerate hearts in patients suffering from cardiovascular disease. The patches served as a prime example of the potential for patient-specific treatment as the patches were made with fatty tissue removed from the patients themselves.
During the research project, they were also able to 3D print “comprehensive structures,” including an entire heart. Other scientists around the world have produced studies regarding bioprinted heart tissue, novel bioinks, and the development of scaffold-free cardiac constructs.
As researchers expect to be 3D printing patient-specific human organs in the next decade or so, medicine will be transformed as patients no longer have to worry about waiting lists—and dying during that extensive time—or issues with transplant rejection.
Ramot has also recently licensed their technology to Matricelf, a spin-off fabricating patient-specific spinal-cord implants.
[Source / Images: The Jerusalem Post]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
SWISSto12 Receives €30M to Make ESA Satellite with 3D Printing
SWISSto12 has a wonderful niche in making waveguides and other optimized satellite components with 3D printing, securing it deals to make satellite components for Lockheed and antennas with the European...
China’s SpaceX 3D Prints over 30 Parts for Rocket Engine
In an effort to become China’s SpaceX, Galactic Energy has raised over $188 million in its Series B round and has now commissioned service bureau Falcontech to 3D print over...
2023 Dream 3D Printing Mergers and Acquisitions: Will Apple Buy…?
2022 saw far fewer mergers and acquisitions, as well as initial public offerings, than the cash-flush year before. However, this year’s drought may mean next year’s glut, as inflation slows...
3D Printing News Unpeeled: LocLab and Hexagon, SpaceTech and Glowscape
eSoutheast University (SEU) Nanjing and ETH Zurich have made Glowscape this is a large format Kuka robot 3D print using Natureworks Ingeoe PLA pellets. The interactive lit piece uses its translucency...
Print Services
Upload your 3D Models and get them printed quickly and efficiently.