Additive Manufacturing Strategies

Prellis Biologics Pursues Bioprinted Lymph Nodes for Production of COVID-19 Antibodies

ST Medical Devices

Share this Article

Bay Area bioprinting firm Prellis Biologics is researching the use of bioprinted lymph nodes for the production of SARS-CoV-2 antibodies. The idea of using antibodies as a form of preventing an illness is an increasingly popular one, with the idea of injecting a person with pre-existing, artificially manufactured antibodies to an illness before their body has a chance to develop their own either through recovering from a virus or through a vaccine.

Prellis is working to procure a heat-killed virus with a goal of having the sample within 14 days of the project’s start, at which point the company will spend about four weeks printing human lymph nodes and inoculate it, screening for antibodies and sequencing them. After that, the firm suggests that it will be able to find a research center that can gest for viral neutralization and binding affinity of a given antibody before the antibodies will be mass manufactured by a partner company.

Image courtesy of Prellis Biologics.

Prellis isn’t the only one working to make synthetic antibodies to the SARS-CoV-2 virus. In particular, Dr. Jacob Glanville, of Distributed Bio, has received a great deal of attention for promoting the idea. Manufactured antibodies would be injected into frontline workers, who would theoretically be able to fight off the virus with those antibodies for a shorter period of time, maybe eight to 10 weeks.

Synthetic antibodies have been approved by the U.S. Food and Drug Administration (FDA) since 1986, with 570 therapeutic synthetic antibodies studied in clinical trials by commercial companies and 79 FDA approved for the market. About 30 of these are for cancer, with the rest covering asthma, arthritis, psoriasis, Crohn’s disease, transplant rejection, migraine headaches and infectious diseases. Synthetic antibodies to treat viral illnesses, however, is still in the exploratory phase.

The first clinical trials for an antibody therapy for COVID-19 are now underway with an antibody called gimsilumab, which inhibits the growth of a protein that appears in high concentrations in the blood serum of COVID-19 patients and is thought to contribute to the hyper-inflammation in their lungs.

Though we are not experts in antibody production, we should of course be skeptical about the Prellis COVID-19 project because the stakes are so high. From what we know of bioprinting, it has come a long way since its inception in the early 2000s, including a number of recent achievements in the creation of bioprinted organoids, from hearts to kidneys to tumors.

However, the applications of this technology are yet to be fully realized, with even drug testing, one of the more immediately viable uses of bioprinting tissues, still in the exploratory phases. Some animal studies are currently in the works and have great promise, such as the successful transplantation of 3D printed knee cartilage into sheep. With that said, even if Prellis were able to print lymph nodes and see them develop antibodies, there are numerous other variables and obstacles to account for when considering the possibility of successfully mass producing and then deploying these antibodies as a form of therapy.

There is some good reason for hope for the Prellis project to keep in mind. According to Prellis, founder Melanie Matheau was able to create a fully functional human lymph node that produced 11 active antibodies to the Zika virus in 2017, receiving a U.S. patent for the technique in December 2019. The process was repeated with different blood donors, with each sample producing antibodies. The company claims that it can perform the same process to develop antibodies to at least one of the strains of coronavirus currently involved in the global pandemic.

Due to the emergency approval fast-tracking that the FDA is currently implementing, a number of initiatives are being given emergency authorization. This includes potentially problematic ones, such as clinical trials for DNA and RNA vaccines developed by companies partnered with the Defense Advanced Research Projects Agency that were previously unable to get their products licensed for human use, as their vaccines were unable to offer sufficient immunity in human trials. It is possible that, if Prellis is able to achieve its goals, it could be given emergency authorization to perform Clinical I trials.

Share this Article


Recent News

3D Printing Webinar and Event Roundup: January 23, 2022

3D Printing News Briefs, January 22, 2022: Research, Business, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, January 15, 2022: 3D Laser Printing, Housing, & More

We’re starting with some interesting research in 3D Printing News Briefs today, which could help reduce the cost and size of 3D laser printing. Moving on, a cancer patient is...

3D Printed Vaginal Rings Could Treat Bacterial Infections

There are plenty of examples in which 3D printing has been used to develop drug delivery systems, but this research out of Hungary is tackling the issue from a new...

3D Printing News Briefs, January 12, 2022: Rebranding, Bioprinting, & More

First up in today’s 3D Printing News Briefs, Particle3D has gone through a rebrand, and a team of researchers developed a way to 3D print and preserve tissues in below-freezing...

3D Printing News Briefs, January 8, 2021: Business, Doxing, 3D Printed Lights, & More

We’re starting with business in today’s 3D Printing News Briefs, as RadTech announced new board members and Ziggzagg is investing in AM-Flow’s workflow automation technology. Cults3D was recently in hot...


Shop

View our broad assortment of in house and third party products.