University of Chile researchers Maximiliano Vélez, Efrén Toala, and Juan Cristóbal Zagal have developed a new angle for fabrication in construction, developing a novel machine that pairs a climbing robot with a 3D printer. Releasing their findings in the recently published ‘Koala 3D: A continuous climbing 3D printer,’ the authors attempt to streamline methods for fabrication of large-scale objects, creating hardware that can ‘continuously navigate along an object being fabricated.’
3D printers are being relied on more regularly in construction projects today and those using materials like concrete, from developing art and furniture to making foam panels, to creating concepts for entire 3D printed villages. Hardware is typically restricted to making objects smaller than their own structures, although the authors point out that one of the benefits of 3D printing is in the ability to make parts that are ‘not substantially smaller than the volume of the complete machine.’
With the new concept of a machine that prints while moving along the object being fabricated (and not just a part being created from a 3D printing platform), the researchers delve further into additive manufacturing processes integrated with:
- Autonomous collaborative robotic assembly
- Vertical slipform construction
- Truss forming machines for aerospace applications
The authors originally came up with a concept for the printer header part and the climbing part, mean to work via a pair of robotically actuated clamps, with the lower mechanism at the bottom of the printer body and the upper mechanism moving between the upper and bottom. Small servo motors were used for clamping due to their compact, lightweight properties, and well as offering high torque. Clamping was performed in an open-loop motion.
“The printer can be decomposed into two major subsystems. One is the vertical climbing stage for reanchoring, precise vertical motion during printing, as well as carrying the electronics,” explained the authors. “The other subsystem is the x-y positioning stage for moving the printer extruder. This stage also carries the material impulsion system. The following subsections describe the design of each subsystem.”
The positioning system is meant to be more robust, offering improvements over typical 3D printers, with a stage covering extruder motion range of 45mm x 45mm on the x-y plane.
“We expected to produce vertical beams having a sectional area of 30mm x 30mm with this motion span. The extra motion span (50% larger on every dimension) was intended to allow the extruder to purge outside the printing area as well as potentially introduce some features on the surface of the produced beam,” explained the authors.
“It was observed that most x-y positioning stages used on 3D printers rely on motion belts driven by timing pulleys. The driving motor is often kept aside from the motion rails and one extra pulley is used to transmit power to the stage. The design was too voluminous for our purposes. Therefore, we opted to position the driving motors in the middle of the rails and transmitted power by means of pinion and rack mechanism. This also required fewer components.”
Due to streamlined design, lighter weight and ‘reported performance,’ the J-Head E3D extruder was chosen for the new 3D printing concept.
“We used the freely available Bowden material impulsion design which is a material impulsion unit located apart from the printing head,” said the authors. “The material is guided into the extruder using a plastic tube.”
A set of eleven sample beams were 3D printed in different sizes, varying from 350 mm to 850 mm, with the addition of one smaller part also fabricated.
“A broad range of experiments were conducted to characterize and understand the proposed concept. It was demonstrated that 3D printing is possible using the proposed printing-reanchoring-printing scheme. Experiments and performance evaluations were executed at the desktop scale with materials commonly used for 3D printing (PLA plastic),” concluded the researchers.
“We identified a theoretical limit to the height of objects produced using these materials. It was caused by the reduced mechanical strength of PLA but not the fabrication process itself. The use of stronger materials will certainly serve to extend these limits. We detected, characterized, and proposed solutions for three important problems in climbing 3D printers. The problems are (1) the machine drop after reanchoring, (2) the structural oscillation at high aspect ratios, and (3) the initial alignment between part and base. Addressing these problems will be important in developing autonomous machines that can climb along the same structures they produce.”
In the future, the authors also plan to simplify the mechanism used for anchoring, as well as create a more basic design to eliminate the use of counterweight. Along with those plans, they also plan to refine the climbing system with less actuators and less weight for better performance.
New 3D printers are continually being created and specifically for the large-scale from concrete formwork to aircraft parts to studying effects like spatter. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Koala 3D: A continuous climbing 3D printer’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Tekna Introduces Coarse Titanium Powders for Faster 3D Printing
Tekna is introducing coarse Ti-64 titanium powders to the market, aimed at laser powder bed fusion (LPBF) users. These larger powders could make a significant difference. Designed for 60 μm...
QIDI Q1 Pro 3D Printer Review: A Heated Value
Disclosure: The Q1 PRO was provided to me by QIDI free of charge for the purpose of this review. I have not received any other compensation. All opinions expressed are...
3D Printing News Briefs, September 21, 2024: Process Monitoring, Earmolds, & More
We’re taking care of business first in today’s 3D Printing News Briefs, as Sevaan Group has launched an additive manufacturing service and Farsoon Europe is partnering with MostTech to expand...
Divide by Zero Releases $500 Altron 3D Printer with Advanced Features
Indian original equipment manufacturer (OEM) Divide by Zero Technologies has released its latest 3D printer, the Altron. Priced at $500, the machine features spaghetti detection, automatic calibration, nozzle height detection,...