New Tech 3D Prints Tiny Objects All at Once in Seconds

Share this Article

A team of researchers from Switzerland’s Ecole polytechnique fédérale de Lausanne (EPFL) have demonstrated the ability to 3D print objects up to 2 cm in size in a matter of seconds. And, unlike every other 3D printing technology, their process prints the entire object at once. The researchers published their findings in the journal Nature Communications.

Loterie et al. dub their process tomographic volumetric additive manufacturing. The technology builds on preceding work that casts multiple beams of light onto a vat of transparent resin, allowing for rapid production of a printed part. However, the resolution for these past processes has been limited to 300 microns (worse than most desktop FDM printers) and the resin must be transparent.

The experimental setup for the EPFL researchers. Image courtesy of Nature Communications.

To overcome these issues, the EPFL team developed a unique method that casts DLP light onto a rotating vat of photopolymer resin. Rather than cast light in standard 2D patterns seen from a single angle (above or below the object), their technique uses patterns based off of projections of the object from different angles similar to a CT scan.

The intensity of the light is not enough to solidify the resin at any point in time, but once the entire vat has been exposed to light from every angle and by every pattern, “a three-dimensional distribution of accumulated light dose is created” that causes the resin to solidify all at once. Necessary for this light dosing method is a high viscosity resin, which reduces the blurring associated with the diffusion of light during the process. You really have to see it to believe it.

With this technique, the team is able to 3D print hard and soft centimeter-scale parts in less than 30 seconds. A tiny model of Notre Dame Cathedral with 80-micron features was printed in just under 20 seconds. A hollow 3DBenchy with a hollow 500-micron chimney cavity was printed in 25 seconds. To improve the quality of the prints, a closed-loop control system using a camera was integrated into the process. So far, the scale of the printing technology is limited to just a couple of centimeters, but the researchers believe that they can scale it up to fabricate objects up to 15 cm in size.

To commercialize the technology, a startup called Readily3D was spun out of the university. The exact nature of that commercialization has not yet been announced, but the technology holds particular promise for soft, 3D-printed objects. For instance, it could be used for to 3D print scaffolds seeded with stem cells for creating tissues or organs. The team has already worked with a surgeon to 3D print arteries. According to the company’s CEO, the trial results “were extremely encouraging.” Other applications Readliy3D is considering include customized hearing aids and mouth guards.

As the researchers pointed out, there have been other methods for tomographic 3D printing already explored. While Lawrence Livermore National Laboratory (LLNL) is already at work on its own form of the technology, we know that Adrian Bowyer of RepRap fame has his own take on a tomographic technique that uses an electric current, though he doesn’t have the U.S. government backing him up like LLNL. Regardless of who comes next, it seems as though we’re on the verge of yet another leap in rapid AM.

Share this Article


Recent News

3D Printing for COVID-19, Part Nine: Safety Goggles, Swabs and Coalitions

3D Printing for COVID-19, Part Eight: The FDA’s 3D Printing Resources



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing for COVID-19, Part Seven: New 3D-Printed Parts and Partners

Corporate, government and individual efforts to use additive manufacturing (AM) to address the medical supply shortages resulting from the COVID-19 outbreak are continuing. We continue to stress that the industry...

3D Printing for COVID-19, Part Six: Government Regulations and Outreach

As a country with a strong centralized government, China was able to enact a quarantine and manufacture supplies quickly compared to nations with weaker or decentralized governance structures. From that...

3D Printing for COVID-19, Part Five: Face Shields and Masks

As a hospitalist mentioned in a previous post on the efforts of 3D printing companies to address the coronavirus outbreak, some 3D printed parts may be safer and easier to...

3D Printing for COVID-19, Part Three: Open Source Ventilators

Since the initial news flurry about how a network of Italian 3D printing users came to the rescue of a hospital on the front lines of the COVID-19 outbreak in...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!