AMS 2025

Russian Research Yields New Insight Into 3D Printed Titanium Implants for Mandibular Reconstruction

AM Research Military

Share this Article

Russian researchers are experimenting with titanium implants meant to promote the reconstruction of the jaw after surgery, outlining their study in the recently published ‘Experimental Biointegration of a Titanium Implant in Delayed Mandibular Reconstruction.’

Surgery to remove an oral tumor usually also results in the need for mandibular reconstruction. And while implants are commonly required in reconstruction, the authors point out that not much is known about how bone integrates into a titanium implant, leaving them to examine the process further.

Unfortunately, surgery to remove cancer in the area of the jaw can be disfiguring, as well as making it difficult to chew. In reconstructing the area, surgeons are becoming more used to inserting titanium implants to replace tissue, beneficial due to its structure and biocompatibility.

Many methods revolve around grafting bone for replacing the deficiency in the mandibular area, whether including the use of an implant or not. Risks include resorption, challenges in rehab later, and delayed infection. There is also a common need for ‘secondary revisional procedures,’ which are obviously counterintuitive to the efficiency of what is initially assumed to be a one-time reconstruction.

As 3D printing becomes more accessible, affordable, and acceptable for use in the medical field, better options are becoming available for creating implants that can be customized completely to the patient, including those who are considered complex.

“The efficacy of mandibular reconstruction with direct implant prosthesis is a controversial topic, yet, in cancer patients with aggravating comorbidities, the best solution can be achieved by individually printed prosthetic mandibular implants,” explain the researchers. “The osseointegrative capabilities of modern porous titanium implants is high, and current technological manufacturing progress, including selective laser melting and 3D printing, has increased the interest of surgical teams in implant-based reconstruction.”

Undeniably, many questions remain around the topic of implant adaptation and the success of prostheses with additional implantation. The researchers delved further into the science of osseous integration with titanium implants in animals, post re-section, studying both the implanting and then the required removal of a prothesis meant to be temporary.

Model of a bionic titanium implant.

Titanium bionic implants, tetragonally shaped, were fabricated to mimic human bone. A Russian-made selective laser melting (SLM) printer was used with Titanium VT1-00 powder. For the experimental model, four adult ewes (from 1.5 to 2 years old) received implants in a fully approved research capacity.

Modeling of titanium implant via ‘Implant Assistant.’

“The experiment protocol included the primary resection of the external cortical layer of the mandible at an extent of 3 cm, with consequent implantation of a sterilized plastic implant created via 3D printing,” stated the authors.

“A plastic implant was positioned into the mandibular defect and secured with standard orthopedic screws. Layered wound closure was performed with absorbable sutures. The skin was closed with non-absorbable material. This completed the first surgical stage of the experiment. As a result, all subjects received 3D modeled plastic implant for mandibular reconstruction.”

Surgical preparation of implant recipient zone in the mandible

Each subject then also underwent secondary surgical intervention but at different times—specifically, one, three, six, and twelve months later, after which they received a patient-specific titanium implant.

Excision of the plastic implant three months after primary surgical intervention.

The researchers reported that it was ‘clearly established’ that the insertion of the implant led to tissue growth over the device, but with no inflammation detected.

“In all cases, the direct contact of osseous tissue with the titanium implant was established, which confirms the biointegration of the metal implant into the mandibular tissue. There were also areas of reorganization of osseous and soft tissue on the surface between the implant and bone with evidence of fibrous and bone integration into the implant.

“The authors conclude that the data obtained demonstrates that a porous titanium implant used in secondary surgical reconstruction provides significant osseous biointegration. This shows that it is possible and often advisable to postpone the implantation of a permanent implant in order to achieve better therapeutic results and account for possible complications after tumor resection.”

3D printing has played a role in numerous research projects focused on mandibular reconstruction as scientists fabricate innovative scaffolds, innovative methods for grafting, and 3D print other types of implants too.

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Excision of the plastic implant three months after primary surgical intervention.

[Source / Images: ‘Experimental Biointegration of a Titanium Implant in Delayed Mandibular Reconstruction’]

Share this Article


Recent News

3D Printing News Briefs, December 14, 2024: Multimaterial SLA, Fusion Energy, & More

Farsoon Cuts Ribbon on 140,000-Square-Meter 3D Printing Facility



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

LEAM’s Clever Add-On Solution Is Making Large-Scale 3D Printing Work Smarter, Not Harder

Instead of creating new 3D printers, German startup LEAM Technologies upgrades existing large-format machines. Its proprietary Directed Energy Material Extrusion (DEMEX) system uses advanced light-emitting diodes (LED)-based technology to solve...

3D Printing Webinar and Event Roundup: December 8, 2024

This week, we’ve got a number of webinars, on topics from 3D printing software and medical applications to printed electronics, PVC for industrial 3D printing, and more. There are also...

Featured

Printing Money Episode 24: Q3 2024 Earnings Review with Troy Jensen, Cantor Fitzgerald

Welcome to Printing Money Episode 24. Troy Jensen, Managing Director of Cantor Fitzgerald, joins Danny Piper, Managing Partner at NewCap Partners, once again as it is time to review the...

John Kawola on BMF’s Formnext Highlights and What’s Next

Boston Micro Fabrication (BMF) has continued to grow steadily since my last visit to its Boston headquarters. The company, known for its ultra-precise 3D printing technology, showcased new product launches,...