Exone end to end binder jetting service

Additive Manufacturing Optimization: Xaar’s Five-Step Evaluation Service Refines InkJet Printing

INTAMSYS industrial 3d printing

Share this Article

UK-headquartered Xaar is launching a new service for evaluating inkjet quality in product development in 3D printing and additive manufacturing processes. This new evaluation service allows industrial users and other companies to take advantage of AM processes with the ability to create products never before possible with conventional methods—and to do so rapidly and much more affordably–from the outset without bringing in a host of startup costs.

Founded over 25 years ago, Xaar is a leader in digital inkjet technology, on a mission to manage greater efficiency in printing and manufacturing. Their development team also designs new printheads for product decoration systems and other industrial 3D printing applications requiring inkjet technology.

In preparation for their new inkjet evaluation service, the Xaar team has built a dedicated lab for sample production and testing.

“Inkjet technology is now highly relevant across a multitude of new product development applications, and we wanted to enable companies to be able to review the suitability of inkjet printing in their product development programs without the need for significant capital investment or upfront costs,” says Mike Seal, Xaar’s Business Development Manager, Advanced Manufacturing and 3D Printheads.

While the lab includes a variety of customized hardware, they are also using a Notion Systems n.jet 3D printer, accompanied by Xaar 1003 GS12 printheads. With photopolymer jetting (PPJ), users can specify printing layers between 0.0185mm – 0.0025mm. The n.jet prints each layer in around six seconds, allowing for fabrication of detailed features as small as 0.1mm.

The evaluation process employs five phases:

  1. Stage One – Users develop ink and assess material compatibility—along with comprehensive rheology testing and fluid measurement.
  2. Stage Two – Optimization of jetting includes configuring printhead waveforms, along with further refining the performance of inkjet fluids and applications overall.
  3. Stage Three – Samples are produced in the laboratory using a custom test rig.
  4. Stage Four – Users are ready to improve development applications, using the Xaar inkjet system.
  5. Stage Five – Projects are finished, providing ongoing support of technology, any application improvements, and both testing and necessary guidance.

With the five-step evaluation, users are also able to assess high-viscosity fluids which can now also be used with success in Xaar’s printheads; in fact, materials with viscosities ranging from 10-25 mPa.s (10-25 cP) can be used.

“Providing access to our inkjet development expertise through our 5-step service helps clients get to market quicker by reducing their own development timelines and costs. From 3D printing through to functional fluid applications such as optics and flat panel displays, the possibilities and applications for inkjet printing are extremely diverse, and our dedicated team and 5-step service is here to support throughout each development project,” concludes Mike.

“Providing access to our inkjet development expertise through our 5-step service helps clients get to market quicker by reducing their own development timelines and costs. From 3D printing through to functional fluid applications such as optics and flat panel displays, the possibilities and applications for inkjet printing are extremely diverse, and our dedicated team and 5-step service is here to support throughout each development project,” concludes Mike.

In labs around the world, inkjet technology continues to progress, depending on user needs—motivating innovation in microjetting and bioprinting, liquid metal, ceramic, and more. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Xaar]

Share this Article


Recent News

$51M to Ramp up 6K’s Production of Batteries and 3D Printing Metals

Secret Audit Reveals US Military’s 3D Printing Tech Vulnerable to Cyberattacks



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, September 9, 2021: Events, Materials, & More

In today’s 3D Printing News Briefs, the first Formnext + PM South China finally opens this week. In materials news, a biomedical company introduced what it calls the first purified...

Featured

US Navy Issues $20M to Stratasys to Purchase Large-Format 3D Printers

The U.S. Navy has been steadily increasing its investment into practical 3D printer usage, as opposed to research. The latest comes in the form of a whopping $20 million contract...

3D Printing Webinar and Event Roundup: August 22, 2021

From food 3D printing and GE Additive’s Arcam EBM Spectra L 3D printer to 3D printing and CAD in a post-pandemic world and topology optimization, we’ve got a busy week...

Featured

The Largest 3D Printed Structure in North America: a Military Barracks in Texas

ICON’s latest 3D printed training barracks structure in Texas signals another positive step for the additive construction industry. Described by the company as the largest 3D printed structure in North...


Shop

View our broad assortment of in house and third party products.