Australian Navy Deploying SPEE3D Metal 3D Printing in Trial Program

Share this Article

At RAPID+TCT 2019 in Michigan, I spoke with Byron Kennedy, the CEO and co-founder of Australian startup SPEE3D, which developed a patented supersonic 3D deposition (SP3D) technology for super-sized metal 3D printing at production speeds. The Melbourne-based company offers two large-scale systems: the WarpSPEE3D, which can print parts up to 1 x 0.7 m, and its award-winning little brother, the LightSPEE3D, capable of 3D printing bronze parts.

Hose fitting (Image by Sarah Saunders)

At the show, Kennedy showed me an aluminum hose fitting that the startup had made for the Royal Australian Navy – one part was cast, and the other was 3D printed. By the time I saw it, the part had already been certified and tested out by the Navy.

“We do have a real interest in the marine industry, because our 6061 aluminum is a very corrosion-resistant material, as well as the bronze. So it’s an under-serviced market at the moment, because not many people can do bronze, and big parts like this is really, really difficult. You need the right materials and the right sizes for that market, and really that’s work we’re putting a lot of focus into,” Kennedy told me at RAPID.

Now, SPEE3D has just announced that the Navy will be deploying its  innovative SP3D technology – the WarpSPEE3D in particular – in a trial program to help streamline the maintenance of its patrol vessels.

In response to a $1.5 million investment by the Australian Government into a two-year pilot of its metal 3D additive manufacturing for the Navy, the company has teamed up with Charles Darwin University (CDU) and the Advanced Manufacturing Alliance (AMA) in order to deliver the pilot program. Actually, the AMA initiative was founded two years by SPEE3D and CDU, and is now, according to a press release, “recognized as a global centre of excellence for real world applications of 3D printing technology.”

SPEE3D uses metal cold spray technology in order to rapidly 3D print industrial-quality metal parts. Instead of using costly gases and high-powered lasers, the method uses kinetic energy, which means metal parts can be 3D printed, affordably, at sea or out in the field.

Type C Aluminium Camlock Fitting, with Hose Tail, 3D printed in Aluminium 6061 for use in marine environments by the Royal Australian Navy.

The WarpSPEE3D in particular, which prints with both copper and aluminum, features a deposition rate of 100 g/min, a maximum part build size of ø 1000 x 700mm, and a maximum part weight of 45 kg. Additionally, the printer can be modified to decrease its environmental impact by installing solar panels and running off solar energy, and it can produce near net shapes that are well-suited for industrial and commercial applications. This is good news, since the pilot program has a goal of majorly increasing the parts that are available to the Navy through the normal supply chain.

“This high-tech machinery enables metal components to be produced quickly and efficiently, meaning our ships can get back on the water without delay. Benefiting both the Navy and industry, the knowledge transfer gained using this capability also positions the Advanced Manufacturing Alliance to pursue further opportunities,” said Australia’s Minister for Defence Industry, the Hon. Melissa Price, MP.

“Benefiting both the Navy and industry, the knowledge transfer gained using this capability also positions the Advanced Manufacturing Alliance to pursue further opportunities. This capability is a prime example of Australian innovation at its best and supports the Government’s unprecedented shipbuilding and sustainment plans.”

[Images: SPEE3D unless otherwise noted]

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Share this Article


Recent News

Visitech Launches First-of-its-Kind DLP for Powder Bed Fusion 3D Printing

DSM’s Andrew Graves on His 30 Years in 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Connecting at Formnext Connect, Part Two: Cellulose, QA, and DLP for PBF 3D Printing

The industry’s biggest trade show made the crucial decision to take its world-renowned event and host it online, potentially disrupting countless networking opportunities and business deals. Given the fact that...

In a Different Tongue: 3D Printed Tongue Offers New Methods for Studying Oral Treatments

Researchers at the University of Leeds, in collaboration with the University of Edinburgh, have developed the first ever 3D printed biomimetic tongue surface. The material features mechanically relevant and accurate...

Sponsored

3D Printing Versus Injection Molding

Most custom plastic parts are produced commercially via injection molding. This is because once the upfront costs are covered, injection molding can produce in quantities of thousands to hundreds of...

3D Printing News Briefs, October 24, 2020: nTopology & Etteplan, DSM, CAR3D Project, MELD Manufacturing

In today’s 3D Printing News Briefs, we’re talking about a partnership between nTopology and Etteplan, a new material from DSM, CAR3D’s COVID-19 protection equipment, and a pretty cool 3D printed...


Shop

View our broad assortment of in house and third party products.