3D Printing with Porous Ti6Al4V for Improved Dental Implants
As implants continue to be a challenge for dental patients, researchers from Taiwan are experimenting with better ways to accommodate bone defects after failed implants must be removed. Results of their study are outlined in ‘3D laser-printed porous Ti6Al4V dental implants for compromised bone support.’
Lack of suitable and supporting alveolar bone is a common issue for dental patients with failed implants, and especially those who have developed inflammation with peri-implantitis. Defects may cause less attachment and bone regeneration, along with decreased clinical improvement. With bone tissue engineering via bioprinting (here, Bio-ActiveITRIdental implants were fabricated on the EOSINT M 280 system) the authors foresee a range of new possibilities for patients through the ability to create tissue scaffolds with features like:
- Internal architecture
- Porosity
- Interconnectivity
- Patient-specific dimensions

Procedures of animal experiment. Osteotomy defect (T-shaped; 7.5 mm (D)7.0 mm (L) on the top and 3.5 mm(D)3.0 mm (L) at the bottom) was prepared at the lateral aspect of distal femoral condyle of New Zealand white rabbit. Either side was randomly inserted with the NobelActiveäimplants (control group) or the Bio-ActiveITRIdental implants (ITRI group). At 4,8 and 12 weeks after the implant insertion, animals were sacrificed by injection of pentobarbital.
Implants were tested on rabbits, with the specimens available both for X-ray and CT assessment, along with biomechanical analysis. Bone ingrowth was tested at different implant locations, with each area evaluated. Biomechanical testing exhibited the effect the histologic responses on implants, along with ‘progressive increase’ in strength as related to bone growth, along with mineralization and maturation of the engineered tissue. Implants with a rougher surface tended to show better osseointegration, compared to the control group samples with smoother surfaces.

Micro-CT analysis. Radiographs of the distal part of the femur were taken with its orientation both perpendicular andparallel to the long axis of the long axis of implant and then the subjects were positioned in the in micro-CT scanner in a cra-niocaudal orientation with suitable stabilization. Datasets were reconstructed using CTvox 2.4 software. The tissue volume (TV:mm3), bone volume (BV: mm3), percent of bone volume (BV/TV: %), trabecular thickness (Tb.Th: mm), trabecular separation(Tb.Sp: mm), Total porosity [Po(tot): %], ratio of the segmented bone surface to the total volume of the region of interests (bonesurface/tissue volume; i.e., bone surface density), and interface surface were analyzed; while results of bone mineral density(BMD) was expressed in mg/cm3.
“Although fabricating Ti alloy dental implants with defined porous scaffold structure is a promising strategy for improving the osseoinduction of implants, in a study using laser beam melting 3D printing technique to fabricate porous Ti6Al4V dental implant with three controlled pore sizes (200, 350 and 500mm), the 350 and500mm pore-sized implants demonstrate a better biocompatibility in terms of cell growth, migration and adhesion,” concluded the researchers. “The pore size of 350mm provides an optimal provides an optimal potential for improving the mechanical shielding to the surrounding bones and osseoinduction of the implant itself.
“Further study on the effect of different pore size and porosity without sacrificing their mechanical property is mandatory to optimize the clinical outcome.”

Gross morphology analysis. Control sample (three lower pictures of the left panel) showed fibrous tissue proliferationaround the coronal region of the implants with no secure fixation between the implant and the surrounding bony tissue. Experi-mental ITRI sample (two pictures of the left panel and pictures of right two panels) exhibited active bony proliferation andpenetration of new bone into the porous structures of implants. BarZ4.3 mm in control pictures; BarZ8.1 mm in experimentalpictures.
Bone regeneration continues to be a source of challenge for medical researchers, spanning numerous areas of medicine. In 3D printing the hope is that with patient-specific cells, better sustainability is possible. And while dental implants are important for so many patients today, a wide range of 3D printed implants have been created for the sustainability of bone, from the use of nanofibers with tubes to porous metallic biomaterials, and even titanium alloys.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘3D laser-printed porous Ti6Al4V dental implants for compromised bone support’]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and recieve information and offers from thrid party vendors.
You May Also Like
3D Printing News Briefs, August 10, 2022: Events, Awards, & More
First up in today’s 3D Printing News Briefs is Formnext + PM South China, which returns to Shenzhen next month. Next, Lithoz won an award from Licensing Executive Society International....
Ganit Goldstein Uses Stratasys 3D Printing to Create Gorgeous GnoMon Fashion Collection
I’m always fascinated by MIT textile researcher and 3D designer Ganit Goldstein‘s work. Before completing her MA in Textiles at London’s Royal College of Art, she majored in fashion and...
3D Printed Space Habitat Now Open to Swiss Students to Live in
Our solar system has an incredible variety of worlds, and recent research has identified several off-Earth locations as potentially habitable for humans, like Mars, Europa, Enceladus, and the Moon. With...
Sakuu Opens Battery 3D Printing Facility in Silicon Valley
Silicon Valley startup Sakuu is using some of the funds from its total $62 million raised to open a new facility for its battery 3D printing platform. The multi-million-dollar site...
Print Services
Upload your 3D Models and get them printed quickly and efficiently.