It’s almost impossible to keep up with all the new technologies being explored, many of which promise to increase efficiencies and quality within the 3D printing space. There are over a dozen different processes which can be used to fabricate an object via additive manufacturing.
A new partnership between Springfield, Ohio-based Palmer Manufacturing and Viridis3D, a Massachusetts-based all-inclusive supplier of additive manufacturing technology for industrial applications, looks to create yet another new method for additive manufacturing.
The deal, which was signed in order to distribute a new Robotic 3D Printer System in North and South America, could transform industry as we know it. Robotics and 3D printing are two of the technologies which are already disrupting manufacturing in a major way. As time progresses, this trend will continue to rapidly develop, so why not combine both these technologies into one unified platform? This is exactly what Viridis3D has done with the help of components provided by Palmer Manufacturing.
The printer can use less material, meaning that it’s more efficient and affordable than other machines on the market. With several patents pending behind the technology, the companies believe that their machine could be a “game-changer” for manufacturers everywhere.
The Robotic Additive Manufacturing machine works with a conveyor belt to automate mass additive manufacturing. It works as follows:
- A robotic arm collects bulk powder from a feeder and distributes it across a build platform on a conveyor belt.
- The printer attached to the robotic arm moves in a windshield wiper motion, leveling the powder as an activating ink is simultaneously deposited.
- Layer-by-layer this process is repeated, building from the bottom up.
- A retaining wall is also fabricated around the part, allowing the machine to quickly remove the platform from the conveyor belt once completed.
- The conveyor belt moves on and the printer restarts the fabrication process on another build platform, allowing for a steady flow of production.
Because of the fact that there is no defined print volume, the machine will only hold enough powder to print a specific object, meaning less waste, faster production, and no unnecessary cleanup.
“We are proud to have developed the first robotic sand based system to take a CAD file to print a mold and core and have a casting in literally a few hours,” stated William Shambley, president of Viridis3D. “Foundries will appreciate both the speed with which the system prints molds and cores and how fast their operation can be up and running. Our software is so easy to use – you simply ‘press print.’ We have partnered with Palmer due to their expertise in providing heavy-duty peripherals to complete the system. Additionally, ABB, a world leader with international sales/service, is our robot partner.”
As many of you may be aware, 3D Systems has been working on a similar type of conveyor belt-style additive manufacturing for its production of modules for Google’s Project Ara smartphone. It will be interesting to see if their setup is at all similar to that of the Robotic Additive Manufacturing machine being sold as part of this new agreement.
“This is a flexible and efficient production system unlike anything we have ever seen before – it is truly revolutionary. Palmer is pleased to bring the heavy-duty mixers, powder feeders, system controls, and other peripherals to this system,” said Jack Palmer, president of Palmer Manufacturing.
Let us know your thoughts on Viridis3D and Palmer Manufacturing’s new process in the Robotic Additive Manufacturing forum thread on 3DPB.com. If you are a foundry looking to purchase one of these new robotic systems, you may fill out the contact form on Viridis’ website to receive additional details from the company. Check out the video below.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
Heating Up: 3D Systems’ Scott Green Discusses 3D Printing’s Potential in the Data Center Industry
The relentless rise of NVIDIA, the steadily increasing pledges of major private and public investments in national infrastructure projects around the world, and the general cultural obsession with AI have...
3DPOD 260: John Hart on VulcanForms, MIT, Desktop Metal and More
John Hart is a Professor at MIT; he´s also the director of the Laboratory for Manufacturing and Productivity as well as the director of the Center for Advanced Production Technologies....
Etsy Design Rule Change Reduces Selection of 3D Printed Goods
Online marketplace Etsy has implemented a rule change requiring all 3D printed goods on the site to be original designs. The update to the site’s Creativity Standards states, ¨Items produced using...
E-Beam OEM Wayland Additive Partners with USC Racing to 3D Print Titanium Exhaust Collector
Every year, standards organization SAE International holds a competition called Formula SAE, in which students from both undergraduate and graduate programs design, build, and race small formula-style race cars. For...