3D Printed Bone Scaffolds Could Heal Devastating Injuries

IMTS

Share this Article

Dr. John A. Svizek, a scientist at the University of Arizona College of Medicine – Tucson, has received a five-year, $2 million grant from the United States Department of Defense to launch a study focusing on how to heal broken bones with a combination of adult stem cells and 3D printing. Dr. Svizek, a biomedical engineer and professor of orthopedic surgery, hopes that the study will result in the ability to fix even the most devastating fractures.

“Imagine an impact that causes half of a long bone to shatter so that it can’t be put back together – no current surgical treatment can ensure that kind of injury will heal,” he said. “This is a really big problem for the military, where explosions or combat injuries can cause big bone defects.”

Dr. Svizek’s lab, with the help of clinical partners in the UA Department of Orthopedic Surgery, plans to 3D print plastic scaffolds that can replace large segments of missing or shattered bone. The scaffolds will be filled with adult stem cells and calcium particles, which lead to faster healing and bone growth. Pilot studies in Dr. Svizek’s lab have been promising.

 “We achieved complete bone formation, covering a large bone defect in about three months. Now we want to make that healing process even faster,” he said.

Dr. Svizek’s team will explore the idea that exercise early in the recovery process can speed healing.

“Studies have shown that exercise makes your bones grow, so maybe we can make bone on our scaffolds grow even faster with exercise,” Dr. Szivek said.

The 3D printed bone scaffolds will be implanted with tiny sensors that can wirelessly transmit data on activity. They will analyze how much weight is being put on the scaffold and for how much time. Bone size changes in a group that regularly exercises will be compared with an inactive group. Dr. Svizek and his team theorize that the active group will show faster bone growth, and he hopes to develop guidelines for post-surgical physical therapy by showing that exercise helps with better bone formation.

Current treatment of severe bone injuries typically fails and requires repeated surgeries.

“Patients often re-break the damaged bone area after surgeons try to repair it and the limb will eventually be amputated,” Dr. Szivek explained. “There’s just no good way of regenerating or re-growing long bone segments right now.”

The human body will attempt to regrow bone for a few months after an injury, but then it gives up and the missing bone is replaced with scar tissue.

“That’s why we need to develop a way to grow bone as quickly as possible – to help the body while it is still able to grow and replace the bone,” Dr. Szivek said.

He anticipates that if the study is successful, clinical trials will take place in military personnel. He also hopes that the technique can be used to help patients with bone cancer.

“This is an incredible example of the kind of innovative research that is made by possible by technological advancement through the convergence of the biological, physical and digital worlds, and exactly the kind of project that demonstrates how the UA is a leader in cutting-edge solutions to difficult challenges,” said UA President Robert A. Robbins, M.D. “The work that Dr. Szivek and his team are doing to help these individuals is a great example of using new technology to significantly improve quality of life for patients. I am confident their unique research will lead to the development of more effective treatments to repair critical bone injuries.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source/Images: University of Arizona]

 

Share this Article


Recent News

“Bundled Light” Enables High Quality Plastic 3D Printing from LEAM

Stoke Space Deploys Solukon’s Automated Depowdering for 3D Printing Reusable Rockets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: March 24, 2024

We’ve got a very busy week of webinars and events, starting with Global Industrie Paris and a members-only roundtable for AM Coalition. Stratasys will continue its advanced in-person training and...

New EOS M 290 1kW Enables Copper 3D Printing for New Space, Automotive, and More

EOS has released a new EOS M 290 1kW metal powder bed fusion (PBF) system, designed specifically with copper in mind. Initially developed by its custom machine building subsidiary, AMCM,...

3D Printing Webinar and Event Roundup: March 3, 2024

In this week’s roundup, we have a lot of events taking place, including SPE’s ANTEC 2024, Futurebuild, the AAOP Annual Meeting, JEC World, and more. Stratasys continues its training courses,...

EOS Taps 1000 Kelvin for “First” AI Co-pilot for 3D Printing

Additive manufacturing (AM) startup 1000 Kelvin has joined forces with EOS to integrate AMAIZE, a pioneering artificial intelligence (AI) co-pilot for AM, into the EOS software suite. The solution aims...