Researchers Create Bionic Mushroom with Graphene and 3D Printed Cyanobacteria

Share this Article

Using 3D printing, researchers at Stevens Institute of Technology have created a bionic mushroom. Why? For good reason, actually. The researchers are working to better understand the biological machinery of cells and how they can be used to create new technologies for defense, healthcare and the environment.

The mushroom – an ordinary white one from a grocery store – was modified with 3D printed clusters of cyanobacteria that generate electricity as well as graphene nanoribbons that collect the current.

“In this case, our system – this bionic mushroom – produces electricity,” said Manu Mannoor, an assistant professor of mechanical engineering at Stevens. “By integrating cyanobacteria that can produce electricity, with nanoscale materials capable of collecting the current, we were able to better access the unique properties of both, augment them, and create an entirely new functional bionic system.”

In the world of bioengineering, cyanobacteria’s ability to produce electricity has been known for a long time; however, the cyanobacteria do not survive for long on artificial biocompatible surfaces, meaning that scientists have been limited in their ability to use the organisms in bioengineered systems. Mannoor and postdoctoral fellow Sudeep Joshi came up with the idea of using mushrooms because they naturally host a complex microbiota and could potentially provide the nutrients, moisture, pH and temperature necessary for the cyanobacteria to survive and produce electricity.

In their lab, Mannoor and Joshi were able to get the cyanobacteria to last several days longer when placed on the cap of a white button mushroom than they did when placed on a dead or artificial mushroom.

“The mushrooms essentially serve as a suitable environmental substrate with advanced functionality of nourishing the energy producing cyanobacteria,” said Joshi. “We showed for the first time that a hybrid system can incorporate an artificial collaboration, or engineered symbiosis, between two different microbiological kingdoms.”

The two researchers first used a robotic arm-based 3D printer to print an electronic ink containing the graphene nanoribbons, which served as an electricity-gathering network. They then printed a bio-ink containing the cyanobacteria onto the mushroom’s cap in a spiral pattern intersecting with the electronic ink at multiple points. At these locations, electrons could transfer through the outer membranes of the cyanobacteria to the conductive network of graphene nanoribbons. When a light was shone on the mushrooms, cyanobacterial photosynthesis was activated and a photocurrent was generated.

The researchers showed that the amount of electricity the bacteria produce can vary depending on the density and alignment with which they are packed – the more densely packed together they are, the more electricity they produce. 3D printing allowed them to assemble the bacteria so as to boost their electricity-producing activity eight times more than cyanobacteria that was casted using a pipette.

Manoor, Joshi and co-author Ellis Cook are the first to pattern 3D printed bacterial cells to augment their electricity-generating behavior, and also to integrate it to develop a functional bionic architecture.

“With this work, we can imagine enormous opportunities for next-generation bio-hybrid applications,” Mannoor said. “For example, some bacteria can glow, while others sense toxins or produce fuel. By seamlessly integrating these microbes with nanomaterials, we could potentially realize many other amazing designer bio-hybrids for the environment, defense, healthcare and many other fields.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source/Images: Stevens Institute of Technology]

 

Share this Article


Recent News

New Ultimaker Essentials 3D Printing Software Targeted at Enterprises

3D Printed Car Parts: Porsche Introduce 3D Printed Pistons for GT2 RS



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

2020 Chevy Stingray Prototype is 75 Percent 3D Printed

Although introduced in the 80s, most famously by legendary Chuck Hull, 3D printing has been a well-kept secret by organizations like NASA and numerous automotive companies who have been enjoying...

German Manufacturers Heraeus AMLOY and TRUMPF Collaborate to 3D Print Industrial Amorphous Parts

Two German companies are collaborating to begin 3D printing industrial amorphous metals—also known as metallic glass and twice as strong as steel—offering greater elasticity and the potential to produce lightweight...

Porsche Creating Partially 3D Printed Seats that Offer Different Levels of Comfort

3D printing is used often in the automotive sector, and many recognizable names, from Volkswagen and BMW to Ford and Toyota, are adopting the technology. German automobile manufacturer Porsche, which...

Pratt & Whitney To 3D Print Aero-engine MRO Component With ST Engineering

The company Pratt & Whitney, which designs, manufactures, services aircraft engines and auxiliary power units, is teaming up with ST Engineering to develop a 3D printed aero-engine component into its...


Shop

View our broad assortment of in house and third party products.