Researchers Create Bionic Mushroom with Graphene and 3D Printed Cyanobacteria

IMTS

Share this Article

Using 3D printing, researchers at Stevens Institute of Technology have created a bionic mushroom. Why? For good reason, actually. The researchers are working to better understand the biological machinery of cells and how they can be used to create new technologies for defense, healthcare and the environment.

The mushroom – an ordinary white one from a grocery store – was modified with 3D printed clusters of cyanobacteria that generate electricity as well as graphene nanoribbons that collect the current.

“In this case, our system – this bionic mushroom – produces electricity,” said Manu Mannoor, an assistant professor of mechanical engineering at Stevens. “By integrating cyanobacteria that can produce electricity, with nanoscale materials capable of collecting the current, we were able to better access the unique properties of both, augment them, and create an entirely new functional bionic system.”

In the world of bioengineering, cyanobacteria’s ability to produce electricity has been known for a long time; however, the cyanobacteria do not survive for long on artificial biocompatible surfaces, meaning that scientists have been limited in their ability to use the organisms in bioengineered systems. Mannoor and postdoctoral fellow Sudeep Joshi came up with the idea of using mushrooms because they naturally host a complex microbiota and could potentially provide the nutrients, moisture, pH and temperature necessary for the cyanobacteria to survive and produce electricity.

In their lab, Mannoor and Joshi were able to get the cyanobacteria to last several days longer when placed on the cap of a white button mushroom than they did when placed on a dead or artificial mushroom.

“The mushrooms essentially serve as a suitable environmental substrate with advanced functionality of nourishing the energy producing cyanobacteria,” said Joshi. “We showed for the first time that a hybrid system can incorporate an artificial collaboration, or engineered symbiosis, between two different microbiological kingdoms.”

The two researchers first used a robotic arm-based 3D printer to print an electronic ink containing the graphene nanoribbons, which served as an electricity-gathering network. They then printed a bio-ink containing the cyanobacteria onto the mushroom’s cap in a spiral pattern intersecting with the electronic ink at multiple points. At these locations, electrons could transfer through the outer membranes of the cyanobacteria to the conductive network of graphene nanoribbons. When a light was shone on the mushrooms, cyanobacterial photosynthesis was activated and a photocurrent was generated.

The researchers showed that the amount of electricity the bacteria produce can vary depending on the density and alignment with which they are packed – the more densely packed together they are, the more electricity they produce. 3D printing allowed them to assemble the bacteria so as to boost their electricity-producing activity eight times more than cyanobacteria that was casted using a pipette.

Manoor, Joshi and co-author Ellis Cook are the first to pattern 3D printed bacterial cells to augment their electricity-generating behavior, and also to integrate it to develop a functional bionic architecture.

“With this work, we can imagine enormous opportunities for next-generation bio-hybrid applications,” Mannoor said. “For example, some bacteria can glow, while others sense toxins or produce fuel. By seamlessly integrating these microbes with nanomaterials, we could potentially realize many other amazing designer bio-hybrids for the environment, defense, healthcare and many other fields.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source/Images: Stevens Institute of Technology]

 

Share this Article


Recent News

Will There Be a Desktop Manufacturing Revolution outside of 3D Printing?

Know Your Würth: CEO AJ Strandquist on How Würth Additive Can Change 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Pressing Refresh: What CEO Brad Kreger and Velo3D Have Learned About Running a 3D Printing Company

To whatever extent a business is successful thanks to specialization, businesses will nonetheless always be holistic entities. A company isn’t a bunch of compartments that all happen to share the...

Würth Additive Launches Digital Inventory Services Platform Driven by 3D Printing

Last week, at the Additive Manufacturing Users’ Group (AMUG) Conference in Chicago (March 10-14), Würth Additive Group (WAG) launched its new inventory management platform, Digital Inventory Services (DIS). WAG is...

Featured

Hypersonic Heats Up: CEO Joe Laurienti on the Success of Ursa Major’s 3D Printed Engine

“It’s only been about 24 hours now, so I’m still digesting it,” Joe Laurienti said. But even via Zoom, it was easy to notice that the CEO was satisfied. The...

Featured

3D Printing’s Next Generation of Leadership: A Conversation with Additive Minds’ Dr. Gregory Hayes

It’s easy to forget sometimes that social media isn’t reality. So, at the end of 2023, when a burst of doom and gloom started to spread across the Western world’s...