Additive Manufacturing Strategies

Researchers Develop High-Viscosity Liquid Jetting 3D Printer

ST Medical Devices

Share this Article

Micro-droplet jetting 3D printing typically uses low-viscosity material, but in a study entitled “Research and Development of a 3D Jet Printer for High-Viscosity Molten Liquids,” a group of researchers investigates using the technology for high-viscosity liquids. Micro-droplet jetting manufacture, or MDJM, is based on discrete deposition technology, which “sprays liquid through a 3D printing device, controls the trajectory of the droplet ejection via the motion platform, accurately sprays the droplet at a specified position, and gradually accumulates into a three-dimensional model.”

The technology is used in biomedical manufacturing, three-dimensional microstructure manufacturing, microelectronics, micro-spacecraft and more. In the paper, the researchers develop a jet 3D printer consisting of a piezoelectric stack, drive frame, lever, heat insulation, heat sink, heater, needle and nozzle. A device for ejecting high-viscosity fluid is designed by analyzing the injection principle of the fluid.

“Initially, the cooling mechanism is designed to overcome the defect that the piezoelectric stacks cannot operate in high-temperature conditions,” the researchers state. “Thereafter, the mathematical model of the liquid velocity in the nozzle is derived, and the factors influencing injection are verified by Fluent.”

The needle velocity of the 3D printer was tested by a laser micrometer, and the relationship between voltage difference and the needle velocity was also obtained.

“The experimental results matched the theoretical model well, showing that the voltage difference, needle radius, nozzle diameter, and taper angle are closely related to the injection performance of the 3D jet printer,” the researchers state. “By using a needle with a radius of 0.4 mm, a nozzle with a diameter of 50 μm, a taper angle of 90°, a supply pressure of 0.05 Mpa, and a voltage difference of 98 V, a molten liquid with a viscosity of 8000 cps can be ejected with a minimum average diameter of 275 μm, and the variation of the droplet diameter is within ±3.8%.”

Several experiments were run on the influencing factors of injection, such as the voltage difference, the needle radius, the nozzle diameter and the nozzle taper angle. The researchers came to the following conclusions:

  • The defect that the piezoelectric stacks cannot operate in high-temperature conditions can be solved by a specially designed cooling mechanism
  • The velocity of the needle is positively correlated with the voltage difference of the piezoelectric stacks
  • Through simulation analysis and experimental research, the ejection capacity of the jet printer is positively correlated with the velocity and the radius of the needle and negatively correlated with the diameter and taper angle of the nozzle
  • Through experimental comparison, by using a needle with a radius of 0.4 mm, a nozzle with a diameter of 50 μm, a taper angle of 90°, a supply pressure of 0.05 Mpa, and a voltage difference of 98 V, a molten liquid with a viscosity of 8000 cps can be sprayed with the minimum average droplet diameter of 275 μm, and the variation of the droplet diameter was within ±3.8%

For this study, the researchers used a type of polyurethane. In future studies, the researchers conclude, the focus should be on the effect of other high-viscosity molten liquids that have not been used for jetting in 3D printing before. This could potentially open up new applications for the technology.

Authors of the paper include Yang Yang, Shoudong Gu, Jianfang Liu, Hongyu Tian and Qingqing Lv.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

3D Printing Robots Receive €1 Million Boost

3D Printing People: A Dialogue Beyond Industry at TIPE 2022



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: January 16, 2022

We’re back in business this week with plenty of webinars and events, both virtual and in-person, starting with the second edition of the all-female-speaker TIPE 3D Printing conference. There are...

Women in 3D Printing’s Posts Agenda for TIPE Conference and Virtual Career Fair

This January 18-20, Women in 3D Printing (Wi3DP) is back for the second time in a row with its TIPE 3D Printing Conference and Virtual Career Fair. Like its inaugural...

Women in 3D Printing Onboards New President

As the nonprofit celebrates seven years of supporting women in the additive manufacturing (AM) industry, Women in 3D Printing (Wi3DP) has taken on a new leader. Kristin Mulherin is taking...

3D Printing Trade Show Best Practices: Food and Food for Thought

This is the third installment of ideas, suggestions, and best practices for your 3D printing stand from an interested observer. We previously discussed booth location and how best to connect...


Shop

View our broad assortment of in house and third party products.